Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007;315:804–7.
Article
CAS
Google Scholar
Fontes CMGA, Gilbert HJ. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem. 2010;79:655–81.
Article
CAS
Google Scholar
Berlin A. No barriers to cellulose breakdown. Science. 2013;342:1454–6.
Article
CAS
Google Scholar
Dutta S, Wu KCW. Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem. 2014;16:4615–26.
Article
CAS
Google Scholar
Ricca E, Brucher B, Schrittwieser JH. Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal. 2011;353:2239–62.
Article
CAS
Google Scholar
Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng. 2007;98:112–22.
Article
CAS
Google Scholar
Zhang YHP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng. 2004;88:797–824.
Article
CAS
Google Scholar
Zeng Y, Zhao S, Yang S, Ding SY. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol. 2014;27:38–45.
Article
CAS
Google Scholar
Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellulose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.
Article
CAS
Google Scholar
Wahlström RM, Suurnäkki A. Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem. 2015;17:694–714.
Article
Google Scholar
Resch MG, Donohoe BS, Ciesielski PN, Nill JE, Magnusson L, Himmel ME, et al. Clean fractionation pretreatment reduces enzyme loadings for biomass saccharification and reveals the mechanism of free and cellulosomal enzyme synergy. ACS Sust Chem Eng. 2014;2:1377–87.
Article
CAS
Google Scholar
Chang RHY, Jang J, Wu KCW. Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. Green Chem. 2011;13:2844–50.
Article
CAS
Google Scholar
Lee YC, Chen CT, Chiu YT, Wu KCW. An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem. 2013;5:2153–7.
Article
CAS
Google Scholar
Lee YC, Dutta S, Wu KCW. Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem. 2014;7:3241–6.
Article
CAS
Google Scholar
Linares N, Serrano E, Rico M, Balu AM, Losada E, Luque R, et al. Incorporation of chemical functionalities in the framework of mesoporous silica. Chem Commun. 2011;47:9024–35.
Article
CAS
Google Scholar
Abraham RE, Verma ML, Barrow CJ, Puri M. Suitability of magnetic nanoparticles immobilized cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotech Biofuels. 2014;7:90–9.
Article
Google Scholar
You C, Chen H, Myung S, Sathitsuksanoh N, Ma H, Zhang XZ, et al. Enzymatic transformation of nonfood biomass to starch. Proc Natl Acad Sci USA. 2013;110:7182–7.
Article
CAS
Google Scholar
van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol. 2011;91:1477–92.
Article
CAS
Google Scholar
Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF. Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol. 2011;22:231–8.
Article
CAS
Google Scholar
Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, et al. Revealing nature’s cellulase diversity: The digestion mechanism of Caldicellulosiruptor bescii CelA. Science. 2013;342:1513–6.
Article
CAS
Google Scholar