Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T: The path forward for biofuels and biomaterials. Science. 2006, 311: 484-489. 10.1126/science.1114736.
Article
CAS
Google Scholar
Clark JH, Luque R, Matharu AS: Green chemistry, biofuels and biorefinery. Ann Rev Chem Biomol Eng. 2012, 3: 183-207. 10.1146/annurev-chembioeng-062011-081014.
Article
CAS
Google Scholar
Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A: Transformation of biomass-derived platform molecules: from high-added value chemicals to fuels via aqueous-phase processing. Chem Soc Rev. 2011, 40: 5266-5281. 10.1039/c1cs15131b.
Article
CAS
Google Scholar
Gude VG, Patil P, Martinez-Guerra E, Deng S, Nirmalakhandan N: Microwave energy potential for biodiesel production. Sustainable Chem Process. 2013, 1: 5 4-
Article
Google Scholar
Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ: Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev. 2008, 37: 527-549. 10.1039/b707343g.
Article
Google Scholar
Gu Y, Jerome F: Glycerol as sustainable solvent for green chemistry. Green Chem. 2010, 7: 1127-1138.
Article
Google Scholar
Beltran-Prieto JC, Kolomaznik K, Pecha J: A review of catalytic systems for glycerol oxidation: alternatives for waste valorization. Aust J Chem. 2013, 66: 511-521.
CAS
Google Scholar
Katryniok B, Paul S, Bellière-Baca V, Rey P, Dumeignil F: Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chem. 2010, 12: 2079-2098. 10.1039/c0gc00307g.
Article
CAS
Google Scholar
Katryniok B, Kimura H, Skrzynska E, Girardon JS, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F: Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem. 2011, 13: 1960-1979. 10.1039/c1gc15320j.
Article
CAS
Google Scholar
Katryniok B, Paul S, Dumeignil F: Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catal. 2013, 3: 1819-1834. 10.1021/cs400354p.
Article
CAS
Google Scholar
Glasnov TN, Kappe CO: The microwave-to-flow paradigm: translating high temperature bacth microwave chemistry to scalable continuous flow processes. Chem Eur J. 2011, 17: 11956-11968. 10.1002/chem.201102065.
Article
CAS
Google Scholar
Buhler W, Dinjus E, Ederer HJ, Kruse A, Mas C: Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J Supercrit Fluids. 2002, 22: 37-53. 10.1016/S0896-8446(01)00105-X.
Article
CAS
Google Scholar
Ott L, Bicker M, Vogel H: Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production. Green Chem. 2006, 8: 214-220. 10.1039/b506285c.
Article
CAS
Google Scholar
Lehr V, Sarlea M, Ott L, Vogel H: Catalytic dehydration of biomass-derived polyols in sub- and supercritical water. Catal Today. 2007, 121: 121-129. 10.1016/j.cattod.2006.11.014.
Article
CAS
Google Scholar
Watanabe M, Iida T, Aizawa Y, Aida TM, Inomata H: Acrolein synthesis from glycerol in hot-compressed water. Bioresour Technol. 2007, 98: 1285-1290. 10.1016/j.biortech.2006.05.007.
Article
CAS
Google Scholar
Yuksel A, Koga H, Sasaki M, Goto M: Hydrothermal electrolysis of glycerol using a continuous flow reactor. Ind Eng Chem Res. 2010, 49: 1520-1525. 10.1021/ie9016418.
Article
CAS
Google Scholar
Brandner A, Lehnert K, BIenholz A, Lucas M, Claus P: Production of biomass-derived chemicals and energy: chemocatalytic conversion of glycerol. Top Catal. 2009, 52: 278-287. 10.1007/s11244-008-9164-2.
Article
CAS
Google Scholar
Zope BN, Davis SE, Davis RJ: Influence of reaction conditions on diacid formation during Au-catalyzed oxidation of glycerol and hydroxymethylfurfural. Top Catal. 2012, 55: 24-32. 10.1007/s11244-012-9777-3.
Article
CAS
Google Scholar
Kunkes EL, Soares RR, Simoneti DA, Dumesic JA: An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift. Appl Catal B. 2009, 90: 693-698. 10.1016/j.apcatb.2009.04.032.
Article
CAS
Google Scholar
Hu J, Liu X, Wang B, Pei Y, Qiao M, Fan K: Reforming and hydrogenolysis of glycerol over Ni/ZnO catalysts prepared by different methods. Chin J Catal. 2012, 33: 1266-1275. 10.1016/S1872-2067(11)60405-1.
Article
CAS
Google Scholar
Hu J, Liu X, Fan Y, Xie S, Pei Y, Qiao M, Fan K, Zhang X, Zong B: Physically mixed ZnO and skeletal NiMo for one-pot reforming-hydrogenolysis of glycerol to 1,2-propanediol. Chin J Catal. 2013, 34: 1020-1026. 10.1016/S1872-2067(12)60543-9.
Article
CAS
Google Scholar
Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P: Metabolic enginering of Clotridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metabolic Eng. 2005, 7: 329-336. 10.1016/j.ymben.2005.06.001.
Article
CAS
Google Scholar
Qin LZ, Song MJ, Chen CL: Aquous-phase deoxygenation of glycerol to 1,3-propanediol over Pt/WO3/ZrO2 catalysts in a fixed-bed reactor. Green Chem. 2010, 12: 1466-1472. 10.1039/c0gc00005a.
Article
CAS
Google Scholar
Alvarez MG, Pliskova M, Segarra AM, Medina F, Figueras F: Synthesis of glycerol carbonates by transesterification of glycerol in a continuous system using supported hydrotalcites as catalyst. Appl Catal B. 2012, 113–114: 212-220.
Article
Google Scholar
Rezayat M, Ghaziaskar HS: Continuous synthesis of glycerol acetates in supercritical carbon dioxide using Amberlyst 15. Green Chem. 2009, 11: 710-715. 10.1039/b815674c.
Article
CAS
Google Scholar
Fukumura T, Toda T, Seki Y, Kubo M, Shibasaki-Kitakawa N, Yonemoto T: Catalytic synthesis of glycerol monoacetate using a continuous expanded bed column reactor packed with cation-exchange resin. Ind Eng Chem Res. 2009, 48: 1816-1823. 10.1021/ie800625g.
Article
CAS
Google Scholar
Costa ICR, Itabaiana I, Flores MC, Lourenco AC, Leite SGF, Miranda LS d M e, Leal ICR, de Souza ROMA: Biocatalyzed acetins production under continuous-flow conditions: valorization of glycerol derived from biodiesel industry. J Flow Chem. 2013, 3: 41-45. 10.1556/JFC-D-13-00001.
Article
CAS
Google Scholar