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MINI REVIEW

Do lifestyles influence the presence 
of promiscuous enzymes in bacteria 
and Archaea metabolism?
Mario Alberto Martínez‑Núñez1*   and Ernesto Pérez‑Rueda2

Abstract 

The adequacy of an organism to the environment depends in part on its ability to modify its repertoire of cellular 
components, such as transporters, regulatory proteins and metabolic enzymes. In this review we discuss some recent 
results showing how the environment influences the content of promiscuous enzymes in bacterial and archaeal 
metabolism. In this regard, the proportion of promiscuous enzymes do not depend on genome size, as has been 
reported for the complete repertoire of enzymes, but it is influenced by the lifestyles, where the fraction of promis‑
cuous enzymes is high in free-living organisms, while there is a small fraction in intracellular organisms. Therefore, 
promiscuous enzymes are enriched in organisms that inhabit fluctuating environments, providing bacteria with an 
enzymatic repertoire of new activities that helps to face multiple ecological variables. Finally, we discuss the possible 
role of gene duplications that occur most frequently in promiscuous enzymes of free-living organisms, which aid 
expand the universe of possible functions.
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Background
The organisms contend and adapt to environment fluc-
tuations using and modifying their repertoire of cellular 
components, such as transporters, regulatory proteins 
and metabolic enzymes. In general, the enzymes play a 
central role on these adaptive processes since they carry 
out the biochemical transformations of substrates into 
useful products, providing to cell with matter and energy. 
In classical terms, enzymes have been described as pro-
teins catalyzing only one type reaction on specific sub-
strates. However, diverse analyses have shown that some 
enzymes may play multiple physiological roles [1, 2]. 
These multifunctional enzymes, in turn, can be classified 
as moonlighting and promiscuous, according to whether 
domains that are present in the enzyme have catalytic 
activity or not [1, 3–5].

In this minireview we discuss the recent results that 
suggest that the environment is shaping and maintaining 
the repertoire of promiscuous enzymes in the metabo-
lism of bacteria and Archaea organisms. In the first sec-
tion, the multifunctional enzymes and their classification 
in moonlighting and promiscuous are examined; later, 
the promiscuity present in enzymes, according if it is by 
substrate or catalytic, is also explored. Finally, we dis-
cuss some concerns about the evolution of promiscuous 
enzymes and the influence of environment and duplica-
tion process on them.

Multifunctional enzymes reflect multiple 
functional roles
Multi-functional enzymes have multiple physiologi-
cal roles in the cell [6], and can be classified in moon-
lighting and promiscuous. Moonlighting proteins 
comprise a class of multifunctional proteins in which a 
single polypeptide chain performs multiple physiologi-
cally relevant biochemical or biophysical functions [7]. 
Moonlighting enzymes have a catalytic activity, and non-
catalytic activity, which can be associated to regulation 
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or protein–protein interactions among other functions. 
These enzymes can carry out their functions in differ-
ent structural domains [1], or in separate cell compart-
ments, e.g. the bacterial cytoplasm or the cell surface [8]. 
This class of proteins have been described in different 
species from bacteria to humans, such as aconitase (EC: 
4.2.1.3) of Homo sapiens (UniProt:Q71UF1), which cata-
lyzes the isomerization of citrate to isocitrate, and has 
a complementary activity of iron-responsive element-
binding protein; or the biotin synthetase (EC: 6.3.4.15) 
BirA (UniProt:P06709) from the bacterium Escherichia 
coli with a secondary activity as transcriptional repres-
sor of the bio operon, which is dependent on cellular 
concentration of biotin [9]. As a counterpart, promis-
cuous enzymes are composed of catalytic domains per-
forming secondary biochemical reactions, not affecting 
the primary catalytic activity. Existence of promiscuity 
in enzymes has been linked to conformational diver-
sity; namely, conformational changes enable the same 
enzyme to accommodate different substrates. In par-
ticular, the mobility of active site loops appears to play 
a key role in mediating promiscuity [10]. In this regard, 
enzyme promiscuity may be also explained because their 
active site can exclude substrates that are too far large to 
fit or with charges in place that cause repulsion between 
them; in contrast small substrates may fit into a capa-
cious active site, although they may lose some of the 
binding affinity available to the optimal substrate. Even 
larger substrates may be able to bind if part of the mol-
ecule can protrude from the active site into the solvent. 
Thus, promiscuity may exist simply because it is impos-
sible to exclude all potential substrates. Alternatively, 
promiscuity could be a relic of past activities in ancestral 
generalist enzymes that catalyzed more than one reac-
tion [11].

How many kinds of promiscuity are there?
Promiscuous enzymes can present substrate or catalytic 
promiscuity. Substrate promiscuity has been described 
as the ability of enzymes to perform comparable chemi-
cal transformations using different substrates, which 
allow microbes to degrade different compounds [4, 
12]. In this regard, the capability of an enzyme to pro-
cess more than one substrate is intimately related to 
its evolvability, and promiscuous enzymes are more 
likely to appear uniformly distributed across species 
in the tree of life [13]. In contrast, catalytic promiscu-
ous enzymes carry out a secondary reaction that results 
in a chemical transformation different from that cata-
lyzed with its canonical substrate [11]. In this context, 
catalytic promiscuity may become less efficient than the 
primary reaction, such as the secondary phosphoser-
ine phosphatase activity of HisB (UniProt:P06987) and 

Gph (UniProt:P32662) enzymes from E. coli, whose 
kcat/KM have values of 1.6 and 7.6 M−1 s−1, respectively; 
whereas the kcat/KM of the physiological phosphoser-
ine phosphatase SerB (UniProt:P0AGB0) is of 8.7 × 104 
M−1  s−1 [14]. In other cases the promiscuous activi-
ties can be quite efficient, as in the enzyme homoserine 
kinase (ThrB, UniProt:P00547) from E. coli, which cata-
lyzes the phosphorylation of homoserine with a kcat/KM 
of 3.8  ×  105 M−1  s−1, while the promiscuous reaction 
of phosphorylation of 4-hydroxythreonine is done with 
a fairly robust kcat/KM of 4.8 × 103 M−1  s−1 [15]; or the 
arylsulfatase from Pseudomonas aeruginosa which cata-
lyzes the primary reaction of hydrolysis of p-nitrophenyl 
sulfate with a kcat/KM of 4.9 × 107 M−1 s−1, whereas the 
secondary reaction of hydrolysis of bis(4-nitrophenyl) 
phosphate has a kcat/KM of 2.5 × 105 M−1 s−1 [16]. These 
examples show that the rate constant for many promis-
cuous reactions are within the range of physiologically 
relevant reactions, which kcat/KM round between 103 
and 105 M−1 s−1 as observed in metabolic enzymes [11]. 
Thereby, promiscuous enzymes could achieve diverse 
activities at the same protein, being one of them (in gen-
eral) more efficient that the second one. This identifica-
tion and characterization of promiscuous enzymes open 
a universe of proteins that can be used as a starting point 
for directed evolution of new biocatalysts for reactions 
with potential uses in pharmaceutical or biotechnological 
industries [17, 18].

The content of microbial promiscuous enzymes is 
influenced by the environment
A relevant question to be explored is how the metabo-
lism and in particular the repertoire of promiscuous 
enzymes is impacted by the environment. With regard 
to this, recent studies have evidenced that the total 
fraction of enzymes in bacterial and archaeal genomes 
depends on a physical variable, the genome size, i.e. 
small genomes have a greater fraction of enzymes, while 
large genomes have a fewer fraction [19] (Fig.  1a). As 
a counterpart, promiscuous enzymes do not seem to 
have an evident correlation with genome size, remain-
ing constant in all the organisms analyzed, Spearman’s 
coefficient = 0.01 (P value = 0.70) [20] (Fig. 1b). Indeed, 
recent studies have revealed that around 10  % of the 
total enzymatic repertoire in bacteria and Archaea 
organisms correspond to promiscuous enzymes [19]. 
Therefore, the promiscuity represents a source that 
would provide a repertoire of different substrate and 
catalytic activities that can be used when the environ-
ment changes. This repertoire can be modified by the 
ecological conditions to which the bacteria face, i.e. 
chemical environment or substrate matrix, could influ-
ence the evolutionary trajectories of evolving enzymes; 
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such as the appearance of novel substrates in the bio-
chemical niche in which enzyme activity is expressed 
may influence the selective advantage that a new activ-
ity could provide [21]. In this context, an example of dif-
ferential evolution in promiscuous enzymes associated 
to lifestyle is the secondary N-acyl amino acid racemase 
activity of the o-succinylbenzoate synthases from E. coli 
found in the gastrointestinal tract of animals, and in the 
soil bacterium Amycolaptosis sp. which differ by more 
than four orders of magnitude in their catalytic effi-
ciency [22, 23].

In this regard, the ecological conditions would affect 
the repertoire of promiscuous enzymes, whose dis-
tribution of their fraction is different between the 
lifestyles of microorganism when Wilcoxon’s test is 
applied (P value  =  0.01), [20]; for instance, free-living 

organisms exhibit a high number of promiscuous 
enzymes, followed by pathogenic, extremophiles and 
intracellular organisms (Fig.  2). The highest number of 
promiscuous enzymes identified in free-living organisms 
may be the consequence of an adaptation mechanism to 
survive in fluctuating ecological environments, such as 
in the Deinococcus-Thermus phylum which are highly 
resistant to environmental hazards [13]. The presence of 
a large proportion of promiscuous enzymes would allow 
the establishment of internal metabolic fluxes that can 
vary depending on environmental conditions, coupled 
with lower regulating promiscuous enzymes which ena-
ble rapid reprogramming of metabolic response, i.e., pro-
miscuous enzymes would be subjected to less metabolic 
regulation than specialist enzymes, as it was previously 
suggested in E. coli [2]. Moreover, promiscuous enzymes 
might endow the organisms with a selective advantage 
and genome plasticity [24], which can help to contend 
against fluctuating ecological niches, such as those faced 
by free-living microorganisms.

The role of gene duplication events in the 
promiscuous enzymes
Gene duplication has been described as an important 
source of raw material for the generation of new func-
tions [25, 26]. In this context, Khersonsky et al. [27] sug-
gest that, the divergence of new function can proceed via 
a ‘generalist’ intermediate that exhibits broad specificity. 
Then, gene duplication may follow this process, rather 
than initiate it, and lead to divergence of a new ‘specialist’ 
enzyme. Thereby, a positive correlation between dupli-
cated promiscuous enzymes and genome size has been 

Fig. 1  Fraction of total and promiscuous enzymes as function of 
genome size. On the X axis, 761 bacterial and archaeal genomes are 
sorted by the number of ORFs and the fraction of enzymes is shown 
on the Y axis. a The proportion of total enzymes for each genome. 
b The proportion of promiscuous enzymes for each genome. In red 
squares, free-living organisms; in blue circles, extremophiles organ‑
isms; in green triangles, pathogens organisms; and in blue asterisks, 
intracellular organisms

Fig. 2  Boxplot of normalized values of promiscuous enzymes. In X 
axis organisms are grouped by lifestyle and ordered by genome size. 
From lowest to highest: intracellular, pathogens, extremophiles, and 
free-living. The distributions of enzyme fraction are different from 
each other (Wilcoxon test, P value <0.01)
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described [19] in which, the free-living organisms with 
larger genomes also have a greater number of duplicated 
genes encoding enzymes, while intracellular organisms 
have lower duplicated genes encoding enzymes as well 
as the smallest genomes. Thus, gene duplication events 
exhibit a high frequency in free-living and also in extre-
mophilic organisms, wherein the percentage of promis-
cuous enzymes that arose by duplication in the genome 
is over 30 % [20]. In contrast, intracellular organisms only 
contain 12 % of promiscuous enzymes that have arisen by 
duplication, which is one third of that observed in free-
living and extremophiles. These findings suggest that 
duplication processes provide free-living and extremo-
philic organisms with raw material to improve the func-
tions of proteins to contend and obtain nutrients from 
changing environments [19]. In contrast, in more stable 
environments, such as intracellular habitats, gene dupli-
cation events seem to be less significant because these 
organisms have been associated to massive gene loss [28], 
as consequence of their life-styles. The emergence and 
persistence of duplicated genes in organisms with fluc-
tuating environments, promotes the improvement and 
innovation of proteins that can be used in nutrient assim-
ilation of different compounds, which may be at low con-
centrations or in rare forms of assimilation. Finally, the 
diversification of functions as consequence of duplication 
promotes environmental adaptation of microorganisms.

Conclusions
A promiscuous function becomes important when a 
new carbon source is found or the existing one is lim-
ited, and therefore it is necessary its transformation to 
be useful for cell growth. Secondary activities of pro-
miscuous enzymes are not under selective pressure, 
and they can accumulate mutations that decrease or 
increase their catalytic efficiency. The efficiency of pro-
miscuous activities of enzymes may evolve in different 
degrees in the microbial species, depending on how 
the environment influences the evolutionary trajecto-
ries of enzymes [21] and the ability that promiscuity 
activity gives to each organism. Therefore, the original 
question raised in the title of this review, do lifestyles 
influence the presence of promiscuous enzymes in bac-
teria and Archaea metabolism?, seems to have a positive 
response. In this regard, although promiscuous enzymes 
appear uniformly distributed across all the species [20], 
there is enrichment in certain lifestyles, such as free-liv-
ing organisms. Therefore, different evolutionary forces 
are acting on bacterial and archaeal metabolism; in the 
one hand, the abundance of total enzymes depends on 
genome size, while in the other hand, the abundance 
of promiscuous enzymes is influenced by the organism 
lifestyle. In this context, free-living and extremophilic 

organisms are enriched of promiscuous enzymes, per-
haps as an adaptive mechanism, which is favored in 
species living in fluctuating environments. Evidences 
suggesting that extremophilic organisms are widely dis-
tributed in a variety of environments [29] reinforce the 
notion that the enrichment of promiscuous enzymes 
arise in fluctuating environments.

Finally, environment favors the appearance of promis-
cuous enzymes in species inhabiting fluctuating envi-
ronments, as well as favors duplication events that allow 
functional divergence in enzymes. Thus, it seems that 
gene duplications occur more frequently in free-living 
organisms, where a third of their promiscuous enzymes 
have arisen by duplication. In contrast, organisms inhab-
iting more stable environments such as intracellular 
species have a lower proportion of duplicated and pro-
miscuous genes encoding enzymes.
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