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Abstract 

Background:  Valorization of lignin from biofuel production is the key to developing biorefinery technologies for sus-
tainable and economic utilization of lignocellulosic biomass. Here we present isolating lignosulfonate from the spent 
liquors of Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL)-pretreated lodgepole pine 
and Douglas-fir forest residue as a dispersant for coal water slurry. The two SPORL pretreatments were conducted at a 
pilot scale and resulted in very high ethanol yield from the pretreated biomass. Therefore, demonstrating the com-
mercial utility of these lignosulfonates has practical significance.

Main results:  The two isolated biorefinery lignosulfonates (LSs), Na-LS and Ca-LS, both had a molecular weight of 
approximately 9000 Da. Fundamental lignin properties such as chemical structure, functional groups were analyzed. 
The two LSs showed slightly better to equal performance in modifying CWS rheology than a commercial dispersant 
naphthalene sulfonate formaldehyde condensate (FDN), despite they were less sulfonated than FDN.

Conclusions:  The practical importance of this study is that the pilot-scale pretreatments that produced the two LSs 
also produced excellent bioethanol yields at high titer without detoxification and washing. This suggests SPORL pre-
treatment is a promising technology for economic bioconversion of under-utilized woody biomass.

Keywords:  Sodium and calcium lignosulfonate, Coal-water slurry, Viscosity, Dispersant, Adsorption, Lignin 
valorization
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Background
The concept of biorefinery is to mimic petroleum refin-
ery to produce multi-products such fuels, chemicals, 
polymers from a lignocellulosic feedstock to diversify 
product portfolio, avoid market saturation, and maximize 
resource utilization. The sugar platform as a major lig-
nocellulosic biomass conversion pathway relies on the 
conversion of carbohydrates to sugars for subsequent pro-
cessing to fuels and chemicals. While it is very attractive 
because sugars are flexible building blocks for producing 
a variety of chemicals and products [1], valorization of the 
lignin fraction is the key to commercial success because 
lignin is the second most abundant fraction in lignocel-
luloses of approximately 15–30  % [2]. Current technolo-
gies for the sugar platform rely on a pretreatment (or 

fractionation) step followed by enzymatic saccharification 
of the pretreated solids [3]. Depending on the pretreat-
ment process employed, lignin is often fractionated into 
a soluble fraction in the pretreatment spent liquor and a 
fraction retained in solids. The current utilization of these 
two lignin fractions—biorefinery lignin—remains as a low 
value boiler fuel as practiced in pulp mills, despite substan-
tial research and development efforts have been made in 
bioconversion of lignocelluloses [4].

Here, we demonstrate a biorefinery lignin, i.e., the water 
soluble lignin fraction from Sulfite Pretreatment to Over-
come the Recalcitrance of Lignocelluloses (SPORL) [5] 
of softwoods—lignosulfonate (LS), as a dispersant of coal 
water slurry (CWS) without further processing. Coal is 
an important energy source. Approximately 39  % of the 
electricity was produced from coal in the U.S. (US Energy 
Information Administration). CWS was developed in 
the 1920s in Russia. Due to the shortage of oil supply in 
the 70s, CWS technologies was further developed as an 
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alternative to liquid fuel in a variety of applications. CWS 
is a clean technology compared with coal itself which can 
alleviate many concerns of coal combustion [6, 7]. For 
example, it can produce high combustion efficiency, low 
discharge of ash, and lower NOx and SOx air emissions 
[8, 9]. Typical CWS contains 60–75  % small suspended 
coal particles in 25–40 % water, and 1 % chemical disper-
sants. CWS can be directly burned without dewatering 
[10]. Dispersants play an important role to reduce CWS 
viscosity and stabilize rheological properties for good 
atomization and efficient combustion [11, 12]. To meet 
the potential demands for CWS, several dispersants such 
as naphthalene sulfonate formaldehyde condensate [13], 
sulfonated acetone-formaldehyde [14], carboxylate type 
copolymer [15], cardanol formaldehyde sulfonate [7], 
sodium polystyrene sulfonate [16], sodium dodecyl ben-
zenesulfonate [17] have been studied. However, lignin 
based dispersants attracted great attention [18, 19].

The practical significance of this study is the existence 
of a mature commercial market for CWS dispersant and 
the valorization of LS from wood biorefinery as a co-
product. Furthermore, with the gradual closing of sulfite 
pulp mills in the last 40  years around the world, there 
is a shortage of commercial LS products. Some regions 
rely on a low quality LS derived from sulfonation of kraft 
lignin—from kraft pulping [20] to meet market demand. 
Therefore, LS from SPORL can be a commercially and 
economically viable co-product for biorefinery.

Results and discussion
FT‑IR and 1H‑NMR spectra of LSs
The FTIR spectra of the two biorefinery LSs, Na-LS and 
Ca-LS are shown in Fig. 1a and the band assignments are 
given in Table 1.

The band at 3420 cm−1 relates to the aromatic and ali-
phatic OH groups in lignin [21]. The peak at 1421 cm−1 
confirms the presence of COO-group [22]. The bands 
at 1190 and 1037  cm−1 are from asymmetric and S=O 
stretching vibration of SO3

2− [23], respectively.
The two LSs were also analyzed by 1H-NMR spectros-

copy (Fig.  1b). Chemical shift assignments are listed in 
Table 1. The regions of the 7.52–6.80 and 6.80–6.50 ppm 
are detected in the aromatic proton of the guaiacyl 
units and syringyl units [24], respectively. The signals at 
6.00–4.00 ppm are Hα, Hβ and Hγ in β-O-4′, β-5′ and β-β′ 
structure [25]. The signals between 3.32 and 3.10  ppm 
correspond to H in phenolic hydroxyl group [24]. The 
signals at 2.3–2.1 and 2.1–1.8 ppm are owing to aromatic 
and aliphatic acetates [26], respectively.

Dispersant molecular weight and function groups
The functional group contents and molecular weight 
of a dispersant have great effects on its dispersion 

performance [10]. The molecular weight distributions 
of the two biorefinery LSs, Na-LS and Ca-LS and FDN 
were not substantially different with a peak at approxi-
mately 10, 000  Da (Fig.  2; Table  2) especially when 
errors in calibration and measurements were taken 
into consideration. Both LSs had a slightly broader 
distribution.

FDN had much higher sulfonic acid group content 
than the two biorefinery LSs, and almost two times of 
that of Ca-LS (Table 2). However, the two biorefinery LSs 
also contained phenolic hydroxyl and carboxyl groups. 
Though Na-LS and Ca-LS were not substantially differ-
ent, Na-LS was slightly more sulfonated with slightly 
higher phenolic hydroxyl content and lower carboxyl 
group content, in agreement with FTIR (Fig. 1a) and 1H-
NMR (Fig.  1b) analyses. The uncertainty analysis based 
on measured quantities in Eq. (1) showed a relative error 
of propagation of 2 % while the measured relative errors 
reported in Table 2 were 2–6 %.
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Fig. 1  a FTIR spectra of Na-LS and Ca-LS; b 1H NMR spectra of Na-LS 
and Ca-LS in DMSO-d6
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Adsorption of dispersants by coal particles
The adsorption of dispersants onto coal particle sur-
face is essential for dispersant to function in modifying 
CWS rheological properties to prevent flocculation and 
agglomeration. The adsorption isotherms of the two 
biorefinery LSs were similar to that of FDN (Fig. 3). The 
measurements errors in adsorption based on replicate 

measurements were small compared with adsorption 
variations among different samples using different dis-
persants. The Langmuir model was found not suitable 
for the non-homogeneous CWS system. However, the 
Freundlich model was not able to provide good fit of 
the adsorption data either despite it was designed for 
non-ideal and heterogeneous adsorption processes. The 
absorption data were therefore fitted using the Redlich-
Peterson model Eq. (1) [27, 28]. 

where Q is the amount of adsorbed (or bound) dispersant 
in mg/L, Qf is the free dispersant concentration in CWS 
in mg/L, A and B in (L/mg)1/N are the Redlich-Peterson 
isotherm constants (Table 3), respectively. N is the expo-
nential parameter.

The two Redlich-Peterson isotherm constants A and B 
were in the similar ranges for Ca-LS and FDN when fit-
ting errors were taken into consideration (Table 3). This 
can be clearly seen form Fig. 3. However, Na-LS showed 
slightly more absorption than FDN despite FDN had a 
higher sulfonic acid group content (Table 2).

Zeta potential of coal particles in CWS
The adsorption between dispersant and coal particle 
surface was mainly through hydrogen bonding, electro-
static, and hydrophobic interactions [29]. Functional 
groups such as hydroxyl, carbonyl, carboxyl and methoxy 
groups existed on coal particle surface. In CWS system, 
coal particles can form double electrostatic layer due to 
the ionization of absorbing dispersant [10]. Hydroxyl, 
carbonyl and sulfonic acid groups of dispersants can 
also interact with coal particles and affect CWS disper-
sion. Zeta potential was used to characterize interfacial 
electrostatic interactions. The zeta potential of coal par-
ticles without the application of dispersant was approxi-
mately −3.50 mV (Fig. 4), indicating coal was minimally 
negatively charged at surface. Carboxylic and phe-
nolic hydroxyl groups on the coal particle surface can 
improve ionization in solution [19], which resulted in 
increased (negatively) coal surface charge and can reduce 
the absorption of anionic dispersant onto coal surface. 
With the application of dispersant, zeta potential (abso-
lute value) was increased continuously (Fig. 4). Applica-
tions of the biorefinery LSs, Na-LS and Ca-LS, resulted 
in slightly higher zeta-potential, i.e., more negatively 
charged coal, than using FDN, which can facilitate CWS 
dispersion. It is noticed that FDN had almost twice the 
amount of sulfonic acid groups content than the two 
biorefinery LSs (Table  2); however, the application of 
FDN resulted in a lower coal Zeta-potential (in absolute 
value) than that from the application of each LS. This 

(1)Q =
AQf

1 + B(Qf )
N

Table 1  Assignments of  lignin IR and  1H-NMR spectral 
bands

Assignment

IR wavenumber (cm−1)

 3390 OH stretching in phenolic and aliphatic structures

 2933/2930 C–H vibration in –CH3 and –CH2–

 2850 C–H vibration in CH3O–

 1681 Conjugated carbonyl groups

 1608 Aromatic skeleton expansion vibration

 1421 COO–vibration

 1190 Asymmetric stretching vibration of SO3
2−

 1037 Assignment S=O stretching vibration

 636 C–O–C stretch stretching vibration
1H-NMR chemical shifts (ppm)

 8.50–9.70 H in carboxylic acid

 7.25–6.80 The aromatic proton of the guaiacyl units

 6.80–6.50 aromatic protons of syringyl units

 5.50–4.00 Hα, Hβ, Hγ in β-O-4′, β-5′ and β-β’structure

 4.00–3.32 H in methoxyls

 3.52–3.10 H in phenolic hydroxyl group

 2.7–2.3 DMSO

 2.3–2.1 H in aromatic acetates

 2.1–1.8 H in aliphatic acetates

100 1000 10000 100000
0.0

0.2

0.4

0.6

0.8

1.0

 

 

Mw

d(
W
t)/
d (
lo
gM

w)

 Na-LS
 Ca-LS
 FDN

Fig. 2  The molecular weight distribution of the three CWS disper-
sants: Na-LS, Ca-LS, and FDN
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indicated that the carboxyl and phenol–hydroxyl groups 
in LS also play an important role in dispersing CWS.

Viscosity‑reducing capacity of dispersants
The CWS prepared in this study was very viscous and 
did not flow under normal rheological testing condi-
tions without the application of a dispersant. At applica-
tion dosages of 0.75 and 1.0  wt%, similar performance 
in terms of modifying rheological properties of CWS 
was achieved when applying the two biorefinery LSs 
compared with the performance achieved using FDN 
(Fig. 5). The apparent viscosity of CWS decreased rapidly 
with increasing shear rate, i.e., shear thinning behavior. 
Replicate rheological tests at shear rate 100 (1/s) indi-
cated that the standard deviations in apparent viscos-
ity measurements were very low of less than 1  %, i.e., 
η100 =  624 ±  5.9, 698 ±  6.7, 857 ±  6.5 (mPa.s) for the 
CWS applied Na-LS, Ca-LS, FDN, respectively, suggest-
ing the differences in modifying CWS viscosity by the 
three dispersants shown in Fig. 5 were significant. CWS 
applied with Na-LS resulted in the lowest shear stress, 
suggesting Na-LS performed better than FDN for CWS 
to disperse and flow. It is generally believed that divalent 
Ca-LS is not a suitable dispersant for CWS due to the 
destruction of the double electrostatic layer. However, the 
results showed that the performance of Ca-LS is equiva-
lent to Na-LS, perhaps due to the low amount of Ca. The 
stress-shear rate curves at dispersant dosage of 1.0 wt% 
suggested the CWSs dispersed by Na-LS and Ca-LS were 
Newtonian like. However, the CWS dispersed using FDN 
had two viscosities which was also observed in a previous 
study [30].

Conclusions
High value utilization of biorefinery lignin with minimal 
processing is critical to improve the commercial viabil-
ity of biofuel production. This study demonstrated two 
biorefinery LSs directly isolated from the spent liquors of 
SPORL pretreatment of softwoods as dispersant for coal 
water slurry. Both biorefinery LSs showed slightly better 
or equal performance in modifying the rheological prop-
erties of CWS compared with a commercial dispersant 
FDN. Since, the SPORL conditions under which the two 
biorefinery LSs produced also prodcued excellent sugar 

Table 2  Functional group contents and molecular weights of three CWS dispersants

Sample Functional group content (mmol/g) Molecular weight

Sulfonic Phenolic hydroxyl Carboxyl Mw Mn Mw/Mn

Na-LS 1.44 ± 0.06 1.84 ± 0.07 2.31 ± 0.10 9300 ± 104 7735 ± 85 1.20 ± 0.03

Ca-LS 1.19 ± 0.07 1.65 ± 0.08 2.55 ± 0.09 8870 ± 123 7625 ± 64 1.17 ± 0.04

FDN 2.24 ± 0.04 0 0 8100 ± 76 7700 ± 46 1.05 ± 0.03
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Fig. 3  Adsorption isotherms of CWS dispersants

Table 3  Parameters for  predicting dispersant adsorption 
(at 1.0  wt% dosage) by  coal using the Redlich-Peterson 
model

A (L/g) B × 105 (1/mg) N r2

Na-LS 2.068 ± 0.657 67.2 ± 17.3 1.330 ± 0.343 0.859

Ca-LS 1.061 ± 0.341 6.21 ± 2.87 1.587 ± 0.639 0.820

FDN 0.934 ± 0.187 2.76 ± 1.13 1.699 ± 0.592 0.919
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and biofuel yields at high titer without detoxification and 
solids washing, this study further supported the commer-
cial viability of SPORL.

Methods
Materials
Two biorefinery LSs, Na-LS and Ca-LS, were separated 
from the spent liquors of SPORL pretreated mountain 
pine beetle killed lodgepole pine and Douglas-fir forest 
residue at a pilot-scale, respectively. These two feedstocks 
represent low grade woody biomass with limited or no 
value for lumber or fiber production. The pretreatment 
conditions for these two feedstocks along with ethanol 
yields from the subsequent enzymatic saccharification 
and fermentation of the pretreated whole slurries were 
listed in Table  4. Detailed descriptions of the two pre-
treatments and ethanol production can be found in the 
previously studies [31, 32]. After each pretreatment, the 
woody materials remained intact, therefore, the spent liq-
uor can be easily separately as freely drainable liquid.

Excellent ethanol yield at high titer without detoxi-
fication in fermentation were achieved from both pre-
treatments, indicating the LSs produced from these two 
pretreatments are representative of biorefinery LSs. 
Separation of LS from the SPORL spent liquors were per-
formed using an in-house pilot plant ultrafiltration (UF) 
system equipped with single-tube modules each with a 
separate permeate outlet [32]. The liquors were first cen-
trifuged at 4000  rpm for 20  min to remove solids. Two 
membranes ES404 and FP200 (Xylem PCI Membranes, 
Kostrzyn, Poland) that had cut-off molecular weight of 
4 and 200  kDa, respectively, were used to remove low 
molecular weight impurities such as sugars and sugar 

degradation products (furans and organic acids, etc.) and 
very fine particular matters.

Naphthalene sulfonate formaldehyde condensate 
(FDN), a commercial dispersant for CWS from Zhanji-
ang additive company (Guangdong province, China), was 
used for comparison study.

Shenhua coal sample (Shenhua Coal CO., LTD., 
Datong, Shanxi, China) was crushed in a jaw crusher to 
obtain a small coal cake below 10 mm as described pre-
viously [6]. The crushed coal sample was dried under 
vacuum until reached at constant weight at 105  °C. The 
dried coal was ball milled (Planetary ball mill QM-4F, 
Nanjing University Instrument Plant, Nanjing, China) for 
2 h and screened using a 100-mesh (0.149 mm opening 
size) screen. The CWS as shown in Fig. 6 was prepared 
using the screen accept coal by continuously agitating the 
coal-water mixture at 60 wt% coal concentration at two 
dispersant concentrations of 0.75 and 1.0 wt%. The mix-
ture was continuously stirred for 10 min at 1200 rpm to 
ensure homogenization.

The results of elemental and proximate analyses of 
the coal are listed in Table  5. The BET surface area 
of 12.10  m2/g and average particle size of 17.27  μm 
were measured by nitrogen adsorption (ASAP2010, 
Micromeritics Instrument Corp., Norcross, USA) and 
dynamic light scattering (Mastersizer 2000, Malvern, 
Worcestershire, UK), respectively. The morphology of 
the coal powder was evaluated using SEM (Carl Zeiss 
AG EVO18, Oberkochen, Germany). The particle shape, 
the high inherent moisture, and the high oxygen content, 
suggested the coal was a low-rank metamorphic coal. 
This type of low quality coal is more difficult to prepare 
CWS with higher apparent viscosities compared with 
that of a high-rank coal [11].
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Table 4  The feedstock and  pretreatment conditions used 
for the production of the two biorefinery LSs along with LS 
and ethanol yields

Na-LS [31] Ca-LS [32]

Feedstock Lodgepole pine wood Douglas-fir forest 
residue

Pretreatment conditions

 T and time 165 °C for 60 min 145 °C for 4 h

 Chemical loadings 
on wood

2.2 wt% H2SO4 2.4 wt% free SO2

8.0 wt% NaHSO3 6.5 wt% Ca(HSO3)2

Liquor to wood ratio 3.00 3.55

 Fermentation total 
solids

20.0 wt% 16.7 wt%

 Ethanol yield and 
titer

288 (L/tonne); 52.2 g/L 284 (L/tonne); 41.9 g/L

 LS yield 68 kg/tonne 130 kg/tonne
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Fourier transform infrared and hydrogen nuclear magnetic 
resonance spectra
The two LS samples were analyzed by Fourier transform 
infrared (FTIR) analysis using a Nicolet 380 FT-IR spec-
trometer (Thermo Scientific Nicolet, Waltham, MA, 
USA), as well as by hydrogen nuclear magnetic reso-
nance (1H-NMR) spectroscopy using a Bruker DRX-500 
spectrometer (Bruker Co., Ettlingen, Germany) at 25 °C. 
Sample preparation for these analyses was described pre-
viously [33].

LS molecular weight
The molecular weight distributions of the dispersants 
were determined by aqueous gel-permeation chromatog-
raphy (GPC) using Ultrahydrogel 120 and Ultrahydrogel 
250 columns and UV detection at 280 nm (Waters 2487, 
Waters Co., MA, and USA). Sodium nitrate was used as 
mobile phase at a flow rate of 0.50 mL/min. Sodium poly-
styrene sulfonates with different molecular weights were 
used as standards for calibration. The uncertainty in cali-
bration was less than 0.05 %.

LS functional group contents
The sulfonic acid and carboxyl groups content of LS were 
determined by non-aqueous conductometric titration 
[18, 34] using an automatic potentiometric titrator (809 
Titrando, Metrohm Corp., Switzerland). The low molecu-
lar weight organic acids, inorganic salts, and other impu-
rities were first removed by anion and cation exchange 
resins. Sodium hydroxide solution of 0.10  mol/L was 
used as the titrant. Titration was conducted at 25 °C. The 
first-order peak of the titration curve were used to calcu-
late sulfonic acid group content according to the follow-
ing expression.

where S is sulfonic acid groups content (mmol/g), CNaOH 
is the molar concentration of NaOH (mmol/L), VNaOH 
is the volume (L) of NaOH solution used, m is the mass 
of the LS sample (g). The pH change was 0.78 through 
titration.

The p-hydroxybenzoic acid was used as the internal 
standard and the tetrabutyl aqueous ammonia stand-
ard solution was used as the titrant to measure carboxyl 
group content [10].

Phenolic hydroxyl content was measured using FC-
reagent method [35]. Dried LS of 50 mg was dissolved 
in 100 mL distilled water in a flask. An aliquot of 15 mL 
of the LS solution was mixed thoroughly with 1.5  mL 
of the FC-reagent and then added 5  mL of 20  % (w/v) 
Na2CO3 solution and adjusted the volume to 25  mL 
with distilled water. The mixture was kept stirring for 
2 h at 30 °C. Absorption measurements at 760 nm were 
carried out by a spectrophotometer (UV-2450, Shi-
madzu, Kyoto, Japan). Vanillin solutions were used for 
calibration.

Determination of adsorption isotherms
The amount of dispersants adsorbed onto CWS was 
measured by the residual mass fraction method. Firstly, 
dispersant solutions with different concentrations 
between 0.2 and 1.2  g/L were added into CWS with 
coal powder consistency of 10  wt%. Each mixture was 
mixed on a shaking bed at 200  rpm for 5  h at 25  °C. 
The mixture was then centrifuged at 10,000  rpm for 
10 min. The content of the dispersant in separated solu-
tion was measured by a UV spectrophotometer (UV-
2450, Shimadzu Corp., Tokyo, Japan) at 280  nm. The 
amount of dispersant adsorbed was determined through 
calibration.

Determination of Zeta potential of coal particles
The zeta potential of coal particles was measured 
using a ZetaPALS analyzer (Brookhaven Instruments, 

(2)S =
C1−NaOH · V1−NaOH

m
Fig. 6  A SEM image of the coal particles studied

Table 5  Proximate and ultimate analyses of the coal sam-
ple on air dried basis

Proximate analysis (wt%)

 Inherent moisture 7.23 ± 0.11

 Ash 8.02 ± 0.08

 Volatile matter 35.04 ± 0.16

Ultimate analysis (wt%)

 C 81.35 ± 0.13

 H 4.72 ± 0.04

 O 11.66 ± 0.08

 N 0.88 ± 0.08

 S 0.51 ± 0.04
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Holtsville, NY, USA). Coal aqueous solutions of 0.2 wt% 
with different concentrations of dispersant were pre-
pared. After shaking at 200  rpm for 5  h at 25  °C, five 
replicate samples were taken and analyzed. The averages 
were reported.

CWS rheological property
The prepared CWS was allowed to stand for 5  min. 
Measurements of rheological properties were performed 
by a rotational rheometer (RV I, Haake Corp., Karlsruhe, 
Germany) with a Z43 measure cup and a Z41 rotor 
at 25  °C. The shear rate was first ramped up from 0 to 
200  s−1 in 3  min and then ramped down in 3  min. All 
measurements were taken at a shear rate of 100 s−1 dur-
ing ramping up period. The measured viscosity value was 
the apparent viscosity.
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