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Nano Cu-catalyzed efficient and selective reduction
of nitroarenes under combined microwave and
ultrasound irradiation
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Abstract

In situ preparation of copper nanoparticles from a copper acetate precursor and its application as an efficient catalyst
for the selective reduction of aromatic nitro compounds with hydrazine hydrate under combined microwave and
ultrasound irradiation were described in detail. The results reveal the synergetic effect of microwave and ultrasound
on the synthesis of copper nanoparticles, and formation of various amino derivatives.
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Introduction
From the viewpoint of environmentally benign and sus-
tainable chemistry, there has been an increasing interest
in the search for more sustainable chemical processes
during the last decade [1,2]. Based on this context, the
use of efficient synthetic method, nontoxic chemicals,
and benign solvents, is the most valuable feature for the
design of a “ideal” chemical protocol. Recently, micro-
wave (MW) and ultrasound (US) technologies have been
widely adopted as important synthetic methods in mod-
ern organic chemistry, owing to the fact that these tech-
nologies can usually reduce the reaction time, minimize
energy consumption and in certain cases, increase the
yield and selectivity of product [3-6].
Catalytic reduction of aromatic nitro compounds re-

mains appealing because it is widely employed in nu-
merous syntheses of intermediates and final products
throughout the dyes, agricultural chemicals, pharma-
ceuticals and materials both in the laboratory and in
industry [7-9]. Although many synthetic routes have been
reported for the preparation of anilines from the corre-
sponding aromatic nitro compounds [10-14], there is still
necessary for the development of cost-effective catalysts
with high activity in particular Fe- [15] and Cu-catalyzed
[16] protocol. Recently, much attention has been attracted
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to the metal nanoparticles catalysts which have revealed
high catalytic activities that far exceed those of conven-
tional homogeneous catalysts, owing to their extremely
small dimensions and huge special surface [17,18]. A few
procedures involving hydrogenation of nitrobenzene into
aniline catalyzed by metal Pt [19-22], Ru [23], Au [24-26]
and Rh [27] nanoparticles have been demonstrated. Pal
et al. obtained amino derivatives by the reduction of
aromatic nitro compounds with NaBH4 catalyzed by
coinage of metal nanoparticles (Cu/Ag/Au) [28]. Wen
et al. studied the catalytic transfer hydrogenation of aro-
matic nitro compounds in presence of polymer-supported
nano-amorphous Ni-B catalyst [29]. Among the pioneer-
ing works of Cu nanoparticles [30-34] emerged as a prom-
ising catalyst for organic synthesis, Saha and Ranu [35]
reported the reduction of nitro-compounds catalyzed by
nano copper particles, however, synthesis required high
stoichiometric ratio of copper nanoparticles (3 equiv.) and
excess reductant (5 equiv.) to nitro-compounds, long reac-
tion time (8–12 hours) and argon protection.
As our continuing efforts on microwave and ultrasound-

assisted reaction [36-40], we found that combined micro-
wave and ultrasound irradiation (CMUI) could strongly
promote the nano Cu-catalyzed reduction of aromatic
nitro compounds due to its simultaneous enhancement on
heat and mass transfer. High reaction rate, low dosage of
catalyst and excellent yields were achieved via a chemose-
lective reduction of aromatic nitro compounds with hydra-
zine hydrate under CMUI.
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Figure 1 XRD pattern (a) and TEM images (b) of Cu nanoparticles.
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Results and discussion
As stated in the literature [41,42], the initial copper
nanoparticles were generated via a reduction of copper
acetate (1 mmol) with hydrazine hydrate (2 equiv) in
ethylene glycol (8 mL) under combined irradiation of
MW: 100 W maximum power and US: 50 W at 120–
125°C for 5 min. Characterization of the copper nano-
particles were investigated by X-ray diffraction (XRD)
and transmission electron microscopy (TEM). All the
peaks on the XRD pattern can be readily indexed to pure
copper (JCPDS file No. 04–0836) as shown in Figure 1(a).
TEM image of the catalyst exhibited that the spherical
nanoparticles dispersed very well (Figure 1(b)). The Cu
Figure 2 Optimization of the conditionsa.
nanoparticles were then employed to catalyze the reduc-
tion of 1a with hydrazine hydrate. The desired product
aniline 2a was obtained in 89% yield in 3.5 minutes under
CMUI (Figure 2, entry 1). Encouraged by this result, we
then investigated the possibility of reducing nitrobenzene
with hydrazine hydrate using Cu(OAc)2 as a catalyst
precursor under CMUI. 97% yield of 2a was formed
(Figure 2, entry 2), and Cu nanoparticles were obtained by
centrifuging and washing with ethanol. Nevertheless, the
yield of 2a greatly reduced to 72% applying this reused Cu
nanoparticle catalyst (Figure 2, entry 3). The activity de-
crease of catalyst was owing to the agglomeration and in-
crease of particle size after reuse (Figure 3). This two-step



Figure 3 TEM images of reused Cu nanoparticles.
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domino reaction would involve an in situ preparation of
nano Cu catalyst followed by reduction of nitrobenzene.
We subsequently examined various solvents under
CMUI in the presence of 50 mol% Cu(OAc)2 (Figure 2,
entries 4–7). None of the solvents other than ethylene
glycol could give a satisfactory. This is mainly due to the
fact that the reduction of simple copper salts usually tend
to stop at the Cu2O stage in the presence of a number of
oxygenous water without protective agents, the di-OH
group of ethylene glycol is probable a stabilizer of Cu2+

in aqueous and prevents the agglomeration and growth
Figure 4 CMUI-assisted nano Cu-catalysed aromatic nitro reductiona.
of nanoparticles [43]. Among the concentration of Cu
(OAc)2 (Figure 2, entries 8–10) and hydrazine hydrate
(Figure 2, entries 11–13) tested, 20 mol% Cu(OAc)2 and
3 equiv. hydrazine hydrate seemed to be the most efficient
condition for this reaction. A lower reaction temperature
of 105–110°C with relatively longer reaction time reduced
the yield of the amine 2a to 73% (Figure 2, entries 14),
while increasing the temperature to 130–135°C also re-
sulted in a decreased yield of 85% (Figure 2, entry 15).
Having optimized the conditions in hand (Figure 2,

entry 12), we next evaluated the scope of the procedure
by varying aromatic nitro compounds. The results
shown in Figure 4 indicated that all reactions proceeded
very smoothly (yields: 89–99%) and quickly (shorter than
6.5 min) under CMUI. Both electron-rich and electron-
deficient aromatic nitro compounds 1 provided the desired
product 2 in good yields. Substantial steric hindrance to
the reduction was tolerated (Figure 4, entries 2, 5 and 10).
Moreover, it is noteworthy that the dehalogenation was
successfully avoided during the progress of the catalytic re-
duction of aromatic nitro compounds to the corresponding
anilines under reaction conditions (Figure 4, entries 6–10)
[44]. The chemoselective reduction was also observed in
the case of m-dinitrobenzene (Figure 4, entry 11), where
one nitro group remained intact. The extremely efficient
dielectric heating along with intensive mass transfer in het-
erogeneous systems resulted in dramatic reaction rate en-
hancement, and the highly catalytic activity of in situ
preparation of nano Cu made the reduction reaction more
efficient with lower amount of catalyst (20 mol%) and
hydrogen source (3 equiv.).
To investigate the action of CMUI, we evaluated the

reduction of nitrobenzene 1a with hydrazine hydrate in



Table 1 Reduction of nitrobenzene using different methodsa

Entry Catalyst (mol%) Method Time Con.b (%)

1 Cu(OAc)2 (20) MW + US 4.5 min 97

2 Cu(OAc)2 (20) convention heating 12 h 52

3 Cu(OAc)2 (20) MW 30 min 83

4 Cu(OAc)2 (20) US 3 h 48

5 metallic Cu (20) MW + US 5 min 35
aReactions were performed using nitrobenzene (1.0 mmol), hydrazine hydrate
(3 mmol) and ethylene glycol (6 mL) at 120–125°C, CMUI (MW: 100 W maximum
power; US: 50 W).
bConversion based on GC–MS analysis.
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the present of pre-catalyst Cu(OAc)2 under conventional
conditions. Only 52% yield of aniline was obtained after
12 hours at 120°C (Table 1, entry 2). Moreover, a lower
yield was obtained when using either MW or US irradi-
ation (Table 1, entries 3, 4). The viability of commercial
metallic Cu powder as a catalyst in the reduction of
nitrobenzene under CMUI (Table 1, entry 5) was also
examined. Previous described enhancement of CMUI on
heterogeneous system, as well as the activation of nano-
size catalysts were clearly demonstrated herein.
The proposed reaction mechanism of this reduction

process is shown in Scheme 1. Firstly, Cu(OAc)2 is re-
duced by hydrazine hydrate to provide activated copper
nanoparticles which would react with another hydrazine
hydrate resulting in the formation of CuH. This further
proceeds to generate Cu and hydrogen by the thermal
decomposition under the CMUI. Then the nitro com-
pound is reduced to a nitroso compound which follows
to provide the hydroxylamine and finally gives rise to
amine via a hydrogenation process [45].

Conclusions
In conclusion, we have presented an efficient and con-
venient method for the chemoselective reduction of aro-
matic nitro compounds catalyzed by in situ prepared Cu
nanoparticles under combined microwave and ultra-
sound irradiation. It allowed us to achieve wide range of
anilines bearing both electron-donating and electron-
withdrawing substituents in excellent yields. The intri-
guing results presented herein might open a promising
Scheme 1 Proposed reaction mechanism.
new approach for the efficient preparation and applica-
tion of nanoparticles.

Experimental
All solvents and reagents were purchased from commer-
cial sources and were used without prior purification.
All combined microwave and ultrasound irradiation ex-
periments were carried out in a apparatus (a professional
TCMC–102 microwave apparatus (Nanjing Lingjiang
Technological Development Company, China), operating
at a frequency of 2.45 GHz with continuous irradiation
power from 0 to 500 W, and a FS–250 professional
ultrasound apparatus (Shanghai S. X. Ultrasonics, China),
operating at a frequency of 20 KHz with controllable
irradiation power from 10 to 100 W. The reactions were
carried out in 15 mL two-necked Pyrex flask, placed in the
microwave cavity and the tip of detachable horn should be
immersed just under the liquid surface. TLC analysis was
performed on aluminum backed plates SIL G/UV254. The
products were purified by column chromatography and
were identified by 1H NMR, 13C NMR spectra recorded
on 400 MHz Bruker NMR instrument and GC–MS.

General experimental procedure for the peduction
of nitroarenes
A mixture of nitro compounds (1 mmol), copper acetate
(0.2 mmol), hydrazine hydrate (3 mmol) and ethylene
glycol (4 mL) was subjected to microwave-ultrasound
activation condition. Then hydrazine hydrate (3 mmol)
in ethylene glycol (2 mL) was added and the ultrasound
and microwave source are switched on successively
(power level: US 50 W, MW 100 W maximum power).
The mixture was irradiated simultaneously by micro-
waves and ultrasound until nearly complete conversion
of aromatic nitro compounds. The progress of the reac-
tions was monitored by TLC and GC–MS. The reaction
mixture was then subjected to centrifugation. After
decanting the liquid, the Cu nanoparticles were washed
with ethanol (5 mL, three times), which was combined
with the decantate. Water (10 mL) was added to the cen-
trifugal liquid, and the product was extracted into ethyl
acetate. Evaporation of solvent and the crude product
was purified by column chromatography over silica gel
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(ethyl acetate/petroleum ether = 1:9–1:6) to afford the
products.

Aniline (2a)
1H NMR (400 MHz, CDCl3): δ 7.34 (t, J = 7.5 Hz, 2H),
6.95 (d, J = 7.4 Hz, 1H), 6.80 (dd, J = 8.4, 0.8 Hz, 2H),
3.69 (s, 2H). 13C NMR (101 MHz, CDCl3): δ 146.78,
129.49, 118.60, 115.33. MS (GC-MS): 93 (M+)

o-toluidine (2b)
1H NMR (400 MHz, CDCl3): δ 7.25 (t, J = 7.0 Hz, 2H),
7.25 (t, J = 7.0 Hz, 2H), 6.93 (t, J = 7.4 Hz, 1H), 6.93
(t, J = 7.4 Hz, 1H), 6.87–6.77 (m, 1H), 6.86–6.78 (m, 1H),
3.67 (s, 2H), 3.67 (s, 2H), 2.33 (s, 3H), 2.33 (s, 3H). 13C
NMR (101 MHz, CDCl3): δ 144.89, 130.64, 127.16, 122.48,
118.73, 115.13, 17.50. MS (GC-MS): 107 (M+)

m-toluidine (2c)
1H NMR (400 MHz, CDCl3): δ 7.36–7.18 (m, 1H), 6.78
(dd, J = 16.7, 7.8 Hz, 1H), 6.64 (ddd, J = 21.0, 11.0,
10.1 Hz, 2H), 3.73 (s, 2H), 2.43 (d, J = 34.7 Hz, 3H). 13C
NMR (101 MHz, CDCl3): δ146.77, 139.21, 129.36,
119.52, 116.16, 112.50, 21.64. MS (GC-MS): 107 (M+)

p-toluidine (2d)
1H NMR (400 MHz, CDCl3): δ 7.01 (d, J = 8.0 Hz, 2H),
6.69–6.62 (m, 2H), 3.49 (s, 1H), 2.29 (s, 2H). 13C NMR
(101 MHz, CDCl3): δ 143.82, 129.77, 127.80, 115.29,
20.47. MS (GC-MS): 107 (M+)

2-aminophenol (2e)
1H NMR (400 MHz, DMSO-d6): δ 8.93 (s, 1H), 6.63 (dd,
J = 7.7, 1.3 Hz, 1H), 6.55 (dtd, J = 9.1, 7.7, 1.6 Hz, 2H),
6.45–6.32 (m, 1H), 4.46 (s, 2H). 13C NMR (101 MHz,
DMSO-d6): δ 143.93, 136.49, 119.46, 116.38, 114.39,
114.31. MS (GC-MS): 109 (M+)

3-chlorobenzenamine (2f)
1H NMR (400 MHz, CDCl3): δ 7.11 (t, J = 8.0 Hz, 1H),
6.86–6.74 (m, 1H), 6.69 (t, J = 2.1 Hz, 1H), 6.56 (ddd,
J = 8.1, 2.2, 0.8 Hz, 1H), 3.71 (s, 2H). 13C NMR (101 MHz,
CDCl3): δ 147.86, 134.79, 130.46, 118.41, 114.98, 113.39.
MS (GC-MS): 127 (M+)

4-chlorobenzenamine (2g)
1H NMR (400 MHz, CDCl3): δ 7.17–7.08 (m, 2H),
6.68–6.57 (m, 2H), 3.57 (s, 2H).

13C NMR (101 MHz, CDCl3): δ 145.00, 129.12, 123.11,
116.26. MS (GC-MS): 127 (M+)

3-bromobenzenamine (2h)
1H NMR (400 MHz, CDCl3): δ 7.05 (t, J = 8.0 Hz, 1H),
6.93 (ddd, J = 7.9, 1.7, 0.9 Hz, 1H), 6.85 (t, J = 2.0 Hz, 1H),
6.60 (ddd, J = 8.0, 2.2, 0.9 Hz, 1H), 3.73 (s, 2H). 13C NMR
(101 MHz, CDCl3): δ 148.06, 130.80, 123.08, 121.31,
117.86, 113.84. MS (GC-MS): 170 (M+)

4-fluorobenzenamine (2i)
1H NMR (400MHz, CDCl3): δ 6.99–6.80 (m, 2H),
6.69–6.55 (m, 2H), 3.56 (s, 2H). 13C NMR (101MHz, CDCl3):
δ 157.54, 155.21, 142.70, 142.68, 116.15, 116.08, 115.77,
115.55. MS (GC-MS): 111(M+)

2,5-dichlorobenzenamine (2j)
1H NMR (400 MHz, CDCl3): δ 7.17 (d, J = 8.5Hz, 1H),
6.77 (d, J = 2.3 Hz, 1H), 6.68 (dd, J = 8.5, 2.4 Hz, 1H),
4.08 (s, 2H). 13C NMR (101 MHz, CDCl3): δ 143.82,
133.12, 130.19, 118.84, 117.44, 115.37. MS (GC-MS):
162(M+)

3-nitrobenzenamine (2k)
1H NMR (400 MHz, CDCl3): δ 7.64–7.53 (m, 1H),
7.53–7.46 (m, 1H), 7.36–7.20 (m, 1H), 6.96 (ddd, J = 8.0,
2.3, 0.8 Hz, 1H), 4.03 (s, 2H). 13C NMR (101 MHz, CDCl3):
δ 149.24, 147.48, 129.91, 120.64, 113.11, 109.01. MS
(GC-MS): 138(M+)
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