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Abstract

Background: The current higher manufacturing cost of biofuels production from lignocellulosics hinders the
commercial process development. Although many approaches for reducing the manufacturing cost of cellulosic
biofuels may be considered, the use of less expensive feedstocks may represent the largest impact. In the present
study, we investigated the use of a low cost feedstock: post-biogas digestion dairy manure fiber. We used an
innovative pretreatment procedure that combines dilute sodium hydroxide with supplementary aqueous ammonia,
with the goal of releasing fermentable sugar for ethanol fermentation.

Results: Post-biogas digestion manure fiber were found to contain 41.1% total carbohydrates, 29.4% lignin, 13.7% ash,
and 11.7% extractives on dry basis. Chemical treatment were applied using varying amounts of NaOH and NH3 (2-10%
loadings of each alkali on dry solids) at mild conditions of 100°C for 5 min, which led to a reduction in lignin of 16-40%.
Increasing treatment severity conditions to 121°C for 60 min improved delignification to 17-67%, but also solubilized
significant amounts of the carbohydrates. A modified severity parameter model was used to determine the
delignification efficiency of manure fiber during alkaline pretreatment. The linear model well predicted the experimental
values of fiber delignification for all pretreatment methods (R2 > 0.94). Enzymatic digestion of the treated fibers attained
15-50% saccharification for the low severity treatment, whereas the high severity treatment achieved up to 2-fold higher
saccharification. Pretreatment with NaOH alone at a variety of concentrations and temperatures provide low
delignification levels of only 5 − 21% and low saccharification yields of 3 − 8%, whereas pretreatment with
the combination of NaOH and NH3 improved delignification levels and saccharification yields 2–3.5 higher
than pretreatment with NH3 alone. Additionally, the combined NaOH and NH3 pretreatment led to noticeable
changes in fiber morphology as determined by SEM and CrI measurements.

Conclusions: We show that combined alkaline treatment by NaOH and NH3 improves the delignification and
enzymatic digestibility of anaerobically digested manure fibers. Although pretreatment leads to acceptable
saccharification for this low-cost feedstock, the high chemical consumption costs of the process likely will require recovery
and reuse of the treatment chemicals, prior to this process being economically feasibility.
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Background
Global consumption of non-renewable fossil fuels in the
transportation sector has increased vigorously during the
last three decades with simultaneous increment in price of
fuels [1,2]. For economic and environmental reasons, it is
critical to find replacements for fossil fuels. Renewable,
second-generation cellulosic biofuels offer the potential to
improve energy security and reduce the deleterious envir-
onmental impact of first generation biofuels [3-6].
However, challenges remain in converting lignocellulosic
biomass into sustainable biofuels in a cost- and energy-
effective manner at large-scale [7-9]. The most commonly
investigated lignocellulosic feedstocks for potential ethanol
production are agricultural (crop residues) and forestry
wastes (mill residues). Both of these feedstocks are natural
composites consisting of three main biopolymers; cellulose,
hemicellulose, and lignin [10-15]. Several studies [16-20]
have demonstrated the potential of manure fibers (either
pre- or post-biogas digestion) as a lignocellulose feedstock
for the production of biofuels and value-added chemicals.
The composition of manure fibers depends on the animal
feed and the conditions of anaerobic digestion if carried out.
The dry fibers typically have a high content of both carbohy-
drate (40− 43%) and lignin (20− 25%). Manure fiber is plen-
tiful. In average, dairy cattle produce about 12.0 gal of
manure per 1,000 lb live weight per day with 14.4 lb total
solids. For example, the United States alone produces 110
million tonnes (d.b.) of manure annually. This manure sup-
ply could generate about 60 tonnes of biogas along with 60
million dry tonnes of undigested fibers that could produce
an additional 7.6 billion liters (1.7 billion gallons) of ethanol
[21,22]. Traditionally, most manure has been spread on
fields, but digestion for biogas production is becoming more
common in almost all countries [23-26]. The undigested
manure byproduct of biogas production primarily is applied
as a nutrient to farmland, but a small part is utilized for ani-
mal bedding [27], manure composts for organic fertilizer
[28-30], and even the manufacture of particleboard [31]. Be-
cause manure fibers are known to be highly recalcitrant to
enzymatic digestion, efforts on the conversion of manure fi-
bers into biofuels have been limited [20]. Anaerobic diges-
tion of manure for the production of biogas consumes
hemicellulose and nearly all-available soluble sugars and
leave cellulose and lignin untouched [20,32]. In addition, un-
desired components associated with nitrogenous extractives
and ash increase the cost of biofuels production [33-35].
The recalcitrant nature of biomass is attributed to tight lig-
nin wrapping, which prevents the accessibility of the bio-
mass carbohydrate fractions (cellulose/hemicellulose) to
enzymes, hemicellulose sheathing, cellulose crystallinity, and
degree of polymerization [9,36]. Lignin not only hinders en-
zyme accessibility to cellulose but also provides the non-
productive and/or irreversible binding of enzymes [37].
Therefore, a pretreatment step mechanical and/or chemical

is necessary to modify the lignocellulose complex matrix
structure in such a way as to disrupt lignin, dissolve hemi-
celluloses, and break down the cellulose crystallinity in order
to enhance substrate accessibility to enzymes and in turn,
release more fermentable sugars [38,39].
In general, nitrogenous matter in anaerobically digested

fiber increases its alkalinity (to pH 8.5 − 9.0). Therefore, al-
kaline pretreatments are expected to require less chemical
than acidic pretreatments [20]. Alkaline biomass pretreat-
ment methods using either sodium hydroxide [40,41] or
aqueous ammonia [42] have been studied in recent years
and shown to have high efficiency and low cost [14,38].
Sodium hydroxide treatment effectively depolymerizes
and removes the most labile biomass components,
such as hemicelluloses and lignin, causes swelling that
increases enzyme accessible surface area (for solvation
and saponification reactions) and reduces the degree of
polymerization and crystallinity of cellulose [40]. Aqueous
ammonia reacts selectively with lignin by cleaving C-O-C
bonds in lignin and ether and ester bonds in lignin-
carbohydrate complexes, but carbohydrate removal and/
or degradation is limited. In addition, these treatments
cause significant morphological changes in the lignocellu-
lose to improve enzyme accessibility [43,44]. However,
aqueous ammonia may not be effective for the pretreat-
ment of substrates having relatively higher lignin (wood
feedstocks) [38]. According to reviews, maximum deligni-
fication (~64%) with enzymatic saccharification (~65%)
could be achieved for anaerobically digested manure fiber
by using dil. NaOH under elevated temperature [20,45].
Also, the addition of supplementary reagents to the alkali
pretreatment chemicals, such as oxidizing agents [46] or
lime [47], has been shown to further improve delignifica-
tion and subsequent enzymatic digestion of lignocellulose
substrates [48]. As pretreatment protocols for post-biogas
digestion (PBD) manure fiber, which contain high residual
lignin, aimed at improving enzymatic digestion for ethanol
fermentation, we explored the use of dilute sodium hy-
droxide and/or aqueous ammonia. The addition of NaOH
to NH4OH shifts the equilibrium to form gaseous NH3, a
reversible reaction that could be used to facilitate its re-
covery and reuse so as to improve the cost-effectiveness of
this process (Figure 1) [49]. The fibers were then enzymat-
ically saccharified to convert glucan to glucose to de-
termine the effectiveness of the pretreatments. The
pretreated fibers were also examined by scanning electron
microscopy and x-ray diffraction measurements to deter-
mine cellulose crystallinity.

Results and discussion
Characterization of post-biogas digestion manure fiber
As determined by mechanical sieve analysis, the post-
biogas digestion (PBD) manure fiber that had undergone
alkaline pretreatment displayed a fiber size range from
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2.4 mm to < 75 μm with a calculated number average
diameter (DN) of 0.041 mm and volume surface mean
diameter (DS) of 0.415 mm [50]. Particles smaller than
18-mesh (1.0 mm) accounted for 93% of PDB fibers (dry
basis), as compared to about 73% of pre-biogas digestion
manure fibers. The effects anaerobic bacterial digestion
lead to smaller particle sizes [20]. In general, particle size
plays a significant role in the effectiveness of the pre-
treatment and fermentation steps [51,52], with smaller
fiber size being advantageous for bioconversion. The PBD
manure fiber contained 41.1% carbohydrate by weight, of
which 23.6% was glucose and 17.5% other sugars (xylose,
galactose, arabinose and mannose) (Table 1). The carbo-
hydrate content of PBD manure fiber is 25–28% lower
than those of other commonly used substrates for cellu-
losic ethanol production (corn stover, switch grass, sugar-
cane bagasse, and wheat straw) [15]. More accessible
carbohydrate sugars are digested in the animal and during
anaerobic digestion. The low carbohydrate content of
PBD manure fibers leads to carbohydrate/lignin ratios
60-65% lower than in other agricultural biomass. PBD
manure fibers contained 27.6% acid insoluble lignin
(ash free and Klason) and 1.8% acid soluble lignin.
Analysis of lignin monomers yielded 19:71:10 syringyl
(S):guaiacyl (G):p-hydroxyphenyl (H) on dry basis, ratios
consistent with corn stover lignin [42,53]. Fiber ash, a
non-reactive and undesired component of manure fiber
for biofuels production, which negatively affects ethanol
yields particularly from thermochemical ethanol produc-
tion [54], accounted for 13.7% (dry basis). It has been re-
ported that manure fiber also contains ~12% solvent
extractives, composed mainly of nitrogenous materials,

nonstructural sugars, inorganics, waxes, oils, and other
compounds [55]. The predominant component, nitrogen-
ous material, comes from indigestible forage proteins and
ammonia and other nitrogen compounds in urine and
manure. This nitrogen could be a potential nutrient
source for microbial growth in ethanol fermentation
[17,35]; however, biomass extractives interfere with ana-
lytical measurements [56,57] and thus were not consid-
ered in our study.

Alkaline pretreatment of PBD manure fiber
We investigated the pretreatment of PBD manure fiber
by dilute sodium hydroxide and ammonium hydroxide
(SHAH). We studied the effects of different pretreat-
ment parameters, including alkali loading, temperature,
and residence time, on the recovery and subsequent en-
zymatic digestion of PBD manure fiber (Table 2). We
used low-severity protocols to evaluate pretreatment
under conditions that minimized the cost of chemicals
and the energy needed to heat the samples: 100°C for
5 min at concentrations of 2 − 10% (by dry fiber weight)
of NaOH and NH3 [41,58]. These pretreatment proto-
cols led to substantial decreases in fiber residual lignin
(16 − 40% delignification) and improved carbohydrate re-
covery (80-67%) and higher carbohydrate concentration
(2-10%). The pretreatment yields were calculated based
on a comparison between the weight of contents present
in the sample before (initial) pretreatment and the weight
of contents present in the solids remaining after pretreat-
ment. These low severity pretreatment conditions achieved
higher fiber delignification than higher severity conditions
[20,47,59]. We also investigated the effects of higher
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Figure 1 Schematic representation of the pretreatment of post-biogas digestion manure fibers for cellulosic bioethanol production by
NaOH and NH4OH. The inset shows (A) reference blank, (B) 0.25% conc. NH4OH (5 mL), and (C) 0.25% conc. NaOH (2.5 mL) plus 0.25% conc.
NH4OH (2.5 mL) [49].
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temperature (120°C at15 psi) and longer residence time
(60 min) at different concentrations of NaOH and am-
monia (Table 2). The more stringent conditions led to
modest increases in total sugars and reductions in total
lignin. The results were consistent with the literature
[20] and observed approximately 2-3-fold increase on
pretreatment recovery.
We compared the effects of SHAH pretreatment pro-

tocols with those using NaOH and aqueous NH3 singly
under conditions of 121°C at 15 psi and 60 min (Table 2).
In terms of solids recovered, total sugars, and total lig-
nin, treatment with NaOH alone was equivalent to SHAH
pretreatment; for both, increased alkali loading led to
lower solids recovery, higher total sugars, and lower total
lignin. Treatment with aqueous NH3 alone led to higher
solids recovery, slightly lower total sugars and higher total
lignin. Increasing concentrations of aqueous ammonia
had little effect on glucose, total sugars, or total lignin. A
linear model relating modified severity parameter that

combines the effects of temperature, time, and alkali con-
centration to the percentage removal of lignin was used
for the determination of fiber delignification during alka-
line pretreatments. The model was developed by plotting
log (M0) vs percent delignification, as given in Figure 2.
The modified severity parameter model was validated by
plotting the experimental vs model predicted values of
fiber delignification (Additional file 1: Figure S1) and ob-
served R2 > 0.94 for all pretreatment methods; indicating
good predictive ability of the model.

Effects of alkaline pretreatment of PBD manure fiber on
subsequent enzyme saccharification
We carried out enzymatic digestion of pretreated PDB
manure fiber to determine the release of fermentable
sugar for ethanol fermentation (Figure 3). The typical
enzymatic hydrolysis profile showed rapid saccharification
over 6 h followed by leveling off thereafter (Figure 3A). En-
zymatic hydrolysis results of SHAH pretreatment at 100°C
(Figure 3B) showed saccharification yields of 15-49% with
18-55% glucose conversion after 24 h with a corresponding
increase in concentration of 5-3% points difference be-
tween each concentration increment. Approximately 1.5 −
2.0-fold increase in saccharification yield was achieved with
121°C at 15 psi and 60 min pretreatment (Figure 3B), indi-
cating that removal of residual lignin (relatively 8-66%
higher delignification) and other substrate features had sig-
nificant impact on the improved enzyme accessibility for
fiber digestion [60]. SHAH pretreatment achieved 3 − 8%
and 1.5 − 2.5-fold higher saccharification than separate
NaOH and NH3 pretreatments, respectively (Figure 3C).
Also, it was approximately 3-fold higher saccharification
than Teater et al. [20].

Effects of pretreatment of PBD manure fiber on surface
structure and cellulose crystallinity
We used scanning electron microscopy (SEM) to deter-
mine the effects of pretreatment on the surface features
of the fibers. PBD manure fibers that were not pre-
treated (Figure 4A) or pretreatment with NaOH alone
(Figure 4B) or aqueous NH3 alone (Figure 4C) exhibited
rigid and highly ordered surface structure. By contrast
the SEM image of fibers that underwent SHAH pretreat-
ment exhibited sponge-like structures and an apparent
increase in fiber porosity (Figure 4D) [39,40].
We used X-ray powder diffraction pattern to deter-

mine the effects of pretreatment on cellulose crystallin-
ity. The results (shown in Figure 5A) showed that the
three treatment protocols at 121°C and 15 psi reduced
crystallinity in the order: 10% NH3 < 10% NaOH < 10%
NaOH +NH3. SHAH pretreatment greatly alters the
crystalline structure by the competitive reaction of both
alkalis resulting in the formation of different allomorphs
that have different unit cell dimensions, chain packaging,

Table 1 Compositional analyses result of post-biogas
digestion manure fiber (anaerobically bacterial digested)

Component a Post-biogas digestion
manure fiber, dry basis

Carbohydrate

Glucose 23.6 ± 0.3%

Xylose, Galactose, Arabinose,
and Mannose

17.5 ± 0.3%

Lignin

Acid insoluble lignin 27.6 ± 0.1%

Acid soluble lignin 1.8 ± 0.0%

Lignin monomer
b S/G ratio 0.3

S/H ratio 1.9

H/G ratio 0.1

Uronic acid 2.6 ± 0.1%

Ash 13.7 ± 0.1%

Extractives 11.7 ± 0.1%

Fiber elements

C 39.1 ± 0.4%

N 3.3 ± 0.2%

P 1.1 ± 0.0%

K 1.4 ± 0.0%

Ca 4.8 ± 0.6%

Mg 0.8 ± 0.1%

S 1.0 ± 0.0%

Cl 0.4 ± 0.1%

Fe 0.3 ± 0.1%

Zn 0.1 ± 0.0%
a Data are average of two replicates. Numbers with ± values represent
standard errors; b Syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H) lignin.
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Table 2 Pretreatment recovery and solid residues composition of post-biogas digestion manure fiber after treatment
using NaOH and NH3 at different conditions

Alkali loading%, gm/gm dry solids Temperature
(°C)

Residence
time (min)

a Modified
CS factor,
log M0

Solids
recovery%

Residue composition%, dry basis

Dilute NaOH Aqueous NH3 Glucose b Total sugars c Total lignin
(AIL + ASL)

2.0 2.0 100 5 0.09 (n = 0.89) 80.6 ± 0.1 24.2 ± 0.2 41.1 ± 0.6 31.1 ± 0.1

4.0 4.0 100 5 0.35 76.6 ± 0.0 24.7 ± 0.4 42.0 ± 0.4 31.0 ± 0.4

6.0 6.0 100 5 0.51 72.0 ± 0.5 25.0 ± 0.3 41.4 ± 0.5 29.0 ± 0.4

8.0 8.0 100 5 0.62 68.9 ± 0.1 27.3 ± 0.7 44.4 ± 1.2 28.6 ± 0.2

10.0 10.0 100 5 0.71 64.6 ± 0.3 28.2 ± 1.5 43.2 ± 1.2 27.6 ± 0.5

2.0 2.0 121/15 psi 60 0.26 (n = 3.1) 78.1 ± 0.2 25.3 ± 0.2 42.1 ± 0.2 31.5 ± 0.1

4.0 4.0 121/15 psi 60 1.20 71.2 ± 0.6 26.6 ± 0.8 42.9 ± 1.0 28.8 ± 0.3

6.0 6.0 121/15 psi 60 1.74 63.0 ± 0.2 30.0 ± 0.7 46.9 ± 1.0 26.5 ± 0.1

8.0 8.0 121/15 psi 60 2.14 57.0 ± 0.6 32.5 ± 0.0 52.3 ± 0.0 22.8 ± 0.0

10.0 10.0 121/15 psi 60 2.43 51.2 ± 0.0 32.8 ± 0.0 53.5 ± 0.0 19.5 ± 0.1

2.0 - 121/15 psi 60 0.21 (n = 2.2) 79.0 ± 0.1 25.5 ± 0.0 42.4 ± 0.0 33.2 ± 0.4

4.0 - 121/15 psi 60 0.89 72.6 ± 0.8 27.0 ± 1.1 44.2 ± 1.2 30.5 ± 0.2

6.0 - 121/15 psi 60 1.28 64.2 ± 0.1 31.1 ± 0.5 48.5 ± 1.3 27.3 ± 0.1

8.0 - 121/15 psi 60 1.56 58.5 ± 0.1 32.2 ± 0.0 48.9 ± 0.0 23.9 ± 1.3

10.0 - 121/15 psi 60 1.77 52.0 ± 0.3 31.8 ± 0.0 50.0 ± 0.0 20.1 ± 0.1

- 2.0 121/15 psi 60 0.21 (n = 2.2) 83.1 ± 0.4 22.9 ± 1.2 41.2 ± 1.8 33.1 ± 0.3

- 4.0 121/15 psi 60 0.89 79.5 ± 1.2 22.7 ± 0.1 42.2 ± 0.3 33.2 ± 0.2

- 6.0 121/15 psi 60 1.28 79.3 ± 1.6 22.2 ± 0.3 42.0 ± 0.0 32.6 ± 0.7

- 8.0 121/15 psi 60 1.56 77.2 ± 0.4 23.2 ± 0.4 43.1 ± 0.8 32.4 ± 0.2

- 10.0 121/15 psi 60 1.77 76.8 ± 0.8 23.2 ± 0.4 43.1 ± 0.8 31.2 ± 0.8

R2 0.95 0.90 0.79 0.87

RMSE 2.26 1.19 1.84 1.57

Tukey’s HSD (P < 0.05) 43.34 17.84 25.5 16.07
a Modified combined severity factor; b Total sugars including glucose, xylose, galactose, arabinose and mannose; c Total lignin including acid insoluble lignin (AIL)
and acid soluble lignin (ASL) after ash correction. Date are average of two replicates. Numbers with ± values represent standard errors.

Figure 2 Plot of percent delignification of manure fibers vs modified severity parameter (logM0) for alkaline pretreatment treated at. (A) 100°C
using combined NH3 and NaOH, (B) 121°C/15 psi using combined NH3 and NaOH, (C) 121°C/15 psi using NaOH, and (D) 121°C/15 psi using NH3.
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and hydrogen bonding relationships [61,62]. Studies rec-
ognized that alkaline pretreatment causes swelling of cel-
lulose, leading to the decrease of degree of polymerization
and crystallinity, and increases the surface area that facili-
tates more substrate exposed to cellulase attack [48].
However, the poor negative correlation between the
cellulose crystallinity index and enzymatic digestion of
fibers under different conditions (R2 < 0.1) (Figure 5B −D),
might be due to the dissolution of amorphous materials
(xylan and lignin) and/or interference of other soluble ma-
terials [63,64].

Effect of pretreatment conditions on fiber delignification
and enzymatic saccharification
We carried out a detailed study of the relationship be-
tween pretreatment parameters and fiber composition
following enzymatic digestion by using a central com-
posite design experiment with 3 dependent factors and 3
different levels (Table 3): 3 alkali loadings (x1) of 2.0, 4.0 and
6.0% of each NaOH and NH3, 3 treatment temperatures
(x2) of 80, 100, and 121°C, and three residence times (x3) of
5, 30, and 60 min. The experimental parameters were se-
lected on the basis of a previous SHAH pretreatment study
on PBD manure fiber. The results showed a dependence on
the pretreatment conditions of sugars released, mainly hemi-
cellulose which is more vulnerable to chemical attack, and
lignin (Table 4). The model identified that, within the stud-
ied range of experiments, chemical loading had the most
significant effect on both sugar dissolution (regression coeffi-
cient, β3 = −5.4) and delignification (β3 = 10.5). Increasing
alkali loadings from 2.0 to 6.0% led to a decrease in total
sugar recovery by 20% and a decrease in residual lig-
nin by 40%. The correlation coefficient values for the
models (R2 ≥ 0.95) indicate that a large fraction of the
variation in responses results from differences in the inde-
pendent variables. Although enhanced removal of residual
lignin is expected to improve subsequent enzymatic di-
gestibility, the simultaneous loss of residual carbohydrate
should decrease the yield of sugars through enzymatic hy-
drolysis [46].
Following enzymatic saccharification, chemical loading

(β3 = 12.6) had more significant effect than residence time
(β2 = 11.0) or treatment temperature (β1 = 5.9). Three lin-
ear effects and one quadratic effect were observed with
subsequent enzymatic digestibility of the treated fibers.
An increase in chemical loading from 2.0 to 6.0% led to a
57% saccharification yield with 64% glucose conversion.
This may be due to the enhanced removal of enzyme bar-
riers, including residual lignin (~30%) and hemicelluloses
(~22%), and surface modification during pretreatment
which improves enzyme accessibility [9]. Linear terms of
delignification and enzymatic saccharification correlated
positively with the treatment parameters, indicating that
these have the greatest effect on substrate deconstruction.
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The second most important parameter affecting the
overall process was the residence time [65]. This sug-
gests that longer treatment times reduce fiber recalci-
trance that limits sugar degradation [66] and improve
energy utilization.

Conclusions
In the present study, enzyme recalcitrant post-biogas di-
gestion (PBD) manure fibers were subjected to an innova-
tive pretreatment method involving combined alkalis (dilute
sodium hydroxide and aqueous ammonia). The effects of

Table 3 Central composite experimental design and the corresponding pretreatment responses with subsequent
enzyme saccharification of post-biogas digestion manure fibers

Independent variables Dependent variables, Y
a% NaOH and NH3

loading, gm/gm
dry fiber, x1

Temperature
(°C), x2

Residence
time (min), x3

Total sugar
recovery%

Delignification%
dry basis

Enzyme saccharification%

8.0 100 30 87.3 ± 0.0 22.9 ± 0.3 24.5 ± 0.8

12.0 80 5 87.4 ± 0.0 25.7 ± 1.3 19.9 ± 4.3

8.0 100 30 87.3 ± 0.0 22.9 ± 0.3 24.5 ± 0.8

12.0 121 5 87.5 ± 0.4 21.6 ± 1.1 23.9 ± 1.2

8.0 100 60 86.0 ± 0.4 26.3 ± 0.8 34.0 ± 1.2

4.0 121 5 94.6 ± 0.1 5.9 ± 0.9 2.5 ± 0.4

12.0 80 60 82.7 ± 0.6 32.8 ± 0.5 44.5 ± 1.0

8.0 100 5 91.5 ± 0.1 17.1 ± 0.2 16.2 ± 0.1

8.0 100 30 87.3 ± 0.0 22.9 ± 0.3 24.5 ± 0.8

12.0 100 30 79.4 ± 0.1 37.1 ± 0.3 36.5 ± 3.8

4.0 80 60 93.4 ± 0.1 12.2 ± 0.1 10.9 ± 0.1

8.0 121 30 80.2 ± 0.8 30.3 ± 1.0 49.0 ± 2.8

12.0 121 60 73.3 ± 0.4 44.3 ± 0.8 59.0 ± 0.5

8.0 100 30 87.3 ± 0.0 22.9 ± 0.3 24.5 ± 0.8

4.0 100 30 93.1 ± 0.1 10.0 ± 1.3 13.7 ± 0.4

4.0 121 60 88.3 ± 0.1 17.5 ± 1.3 27.5 ± 0.2

4.0 80 5 95.2 ± 0.1 11.1 ± 1.1 3.1 ± 0.2

8.0 80 30 89.5 ± 0.1 21.1 ± 0.0 24.8 ± 0.5

8.0 100 30 87.3 ± 0.0 22.9 ± 0.3 24.5 ± 0.8
a Percentage of each NaOH and NH3 added to the dry manure solids. Data are average of two replicates. Numbers with ± values represent standard errors.

Table 4 Statistical analysis of the effect of pretreatment parameters on manure fiber pretreatment recovery and
following enzymatic saccharification

Total sugar recovery Delignification Enzymatic saccharification
aR2 0.96 0.97 0.95

Prob. > F < 0.0001* < 0.0001* < 0.0001*

Terms Estimate bProb. > | t | Estimate bProb. > | t | Estimate bProb. > | t |

Temp (°C) −2.43 0.0011* 1.66 0.061 5.88 0.0035*

Time (min) −3.26 0.0001* 5.17 < 0.0001* 11.0 < 0.0001*

Chemical loading (% on dry solids) −5.42 < 0.0001* 10.4 < 0.0001* 12.6 < 0.0001*

Temp x Temp −1.50 0.1613 1.43 0.360 7.13 0.0345*

Time x Time 2.41 0.0372* −2.61 0.113 −4.65 0.139

Chemical loading x Chemical loading −0.079 0.938 −0.76 0.620 −4.64 0.140

Temp x Time −1.73 0.015* 3.26 0.0046* 3.47 0.0681

Temp x Chemical loading −0.44 0.463 0.91 0.322 0.33 0.848

Time x Chemical loading −1.37 0.0414* 2.14 0.0363* 3.36 0.0755
a Correlation coefficient; b p-value of the two-tailed test; * Numbers with asterisk indicate that the term has a significant effect at 95% confidence level.
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pretreatment conditions were studied, including alkali load-
ing on fibers, treatment temperature, and residence time.
The results show that the dual alkali treatment improves
fiber delignification (maximum 67.1%) and subsequent en-
zymatic digestion (maximum of 76.3%) of PBD manure
fibers. Furthermore, the pretreatment alters the surface
structural characteristics of the fiber apparently mak-
ing them more prone to enzyme attack for enhanced
sugar release. A positive factor in the economic viabil-
ity of PBD manure fiber for cellulosic bioethanol pro-
duction, is the high availability and relatively low cost
of the feedstock. On the other hand, the costs of chem-
ical consumption need to be taken into account, al-
though these could be mitigated in part by recovery
and reuse of the gas phase ammonia formed during
the alkali reaction. In addition, it may be possible to
improve the efficiency of the process by combined ma-
ceration (mechanical milling) and alkaline pretreatment
with both NaOH and NH3, and studies to evaluate this ap-
proach are ongoing.

Methods
Manure samples
Post-biogas digestion manure fibers were collected from
Maple Leaf Dairy Farm, Cleveland, Wisconsin. The cat-
tle feed was a mixture of alfalfa, corn silage and other
proteins according to the National Research Council
nutrient requirements of dairy cattle. The anaerobic
digestion was running with a hydraulic retention time
of 14–15 days at 35 − 40°C. The slurry containing un-
digested solids were separated by a 2.0 mm screen
screw press. The collected fibers contained 60 − 65%
moisture; they were air-dried and ground with a la-
boratory hammer mill (Christy & Norris Ltd., England,
Model No. 1024XC) and then sieved. The fiber fraction
within 40–50 mesh was used for the analysis.

Combined alkaline pretreatment
Sodium hydroxide (50% wt. Fisher Catalog No. SS254-
4) and ammonium hydroxide (30% wt. Fisher Catalog
No. 125) were used pretreatment. Weighed quantities
of fiber in 50 ml Oak Ridge thermal resistant tubes (Fisher
Catalog No. 05-563-10G) were treated with NaOH and/or
NH3 (at different loadings of each alkali 2 − 10% w/w) at
room temperature for 2 h, followed by heating at 100 or
121°C for 1 h. The solid-to-liquid ratio was maintained at
1:7. After pretreatment, the supernatant was collected fol-
lowing centrifugation at 3,900 rpm (Eppendorf 510R) for
20 min, and the solid residues obtained were thoroughly
washed with water until the pH reached neutrality. Finally,
the solid residues were dried in a freeze-dryer (VirTis
freezemobile 35ES) and stored at −80°C (New Brunswick
U-700 freezer).

Enzymatic digestibility
Enzyme saccharification of fibers, both non-treated (con-
trol) and chemically treated, was carried out according
to the standard NREL procedure (LAP 42629). Sacchari-
fication was conducted in 50 mL Falcon tubes at 2.0%
(w/v) substrate consistency level using sodium acetate
buffer pH 4.8. Tetracycline antibiotic was added at 0.02%
(w/v) to prevent microbial contamination, Enzymes used
in this study, Cellic CTec2 (cellulase complex containing
cellulose and β-glucosidase) and Cellic HTec2 (hemicellu-
lases including xylanase), were generously provided by
Novozymes (Franklinton, NC). The Cellic CTec2 and Cel-
lic HTec2 loadings on substrates were 5% and 2% w/w
(gm enzyme/gm dry fiber), respectively. Substrates were
pre-incubated at 50°C in sodium acetate buffer for 24 h
prior to the addition of enzymes. Hydrolysis was con-
ducted at 50°C in a shaker (New Brunswick Scientific
Excella E24) at 200 rpm for 24 h. Samples were collected
intermittently and analyzed for sugar concentration using
High Performance Liquid Chromatography (HPLC) Sys-
tem (Agilent Technologies 1200 series). The HPLC was
equipped with Bio-rad deashing micro-guard column (Cat
No. 125–0118, Bio-Rad, CA) and Agilent Hi-Plex H (7.7 ×
300 mm, 8 μm) analytical column operated at 60°C
with 5 mM H2SO4 mobile phase at the flow rate of
0.7 mL/min. A refractive index detector (Agilent Tech-
nologies) was operated at 55°C. The mobile phase was
filtered through a 0.22 μm nylon membrane (Millipore
Corporation, MA) and degassed. The released glu-
cose and other sugars (xylose, galactose, arabinose
and mannose) at each time interval were used to cal-
culate the glucose conversion and saccharification ef-
ficiency of the substrate as a percentage to the potential
sugars available in the substrates. Each data point was the
average of two replicates.

Analytical methods
Manure fiber moisture, extractives and ash contents were
determined according to National Renewable Energy
Laboratory (NREL) analytical procedures LAP 012,
LAP 010 and LAP 005, respectively. Similarly, carbohy-
drate analysis of non-treated and chemically pretreated
manure fiber was carried out according to NREL proced-
ure LAP 009. Samples (0.3 g) were weighed (W1) in a 5 ml
centrifuge tube and hydrolyzed with 3 ml 72% H2SO4

(v/v) for 60 min. The hydrolyzate was diluted to 4%
acid concentration (v/v) and autoclaved for 60 min at
121°C at 15 psi. The hydrolysis solution was vacuum fil-
tered through the previously weighed filtering crucible.
The filtrate was collected (F1) and analyzed for carbohy-
drate and acid soluble lignin determination. Carbohydrate
content, including glucose, xylose, galactose, arabinose,
and mannose sugars, were analyzed on an HPLC Sys-
tem (Agilent Technologies 1200 series) equipped with
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a Bio-Rad deashing micro-guard column (Cat No.
125–0118, Bio-Rad, CA) and an Agilent Hi-Plex H
(7.7 × 300 mm, 8 μm) analytical column with a mobile
phase of 5 mM H2SO4 operated at a flow rate of
0.7 mL/min at 60°C. The mobile phase was filtered
through a 0.22 μm nylon membrane (Millipore Corporation,
MA) and degassed, and peaks were detected by a refractive
index detector (Agilent Technologies) operated at 55°C.
Acid insoluble lignin was calculated gravimetrically as

acid-insoluble residue after correction for ash content.
The lignin collected during filtration was washed with
water and dried overnight in an oven at 105°C. The weight
of the crucible with lignin was recorded (W2), and the
sample was ashed in muffle furnace for 4 h at 575°C. Fi-
nally, the weight of the crucible with ash content was re-
corded (W3). Acid insoluble lignin (AIL) content of the
manure fiber was calculated by the following equation:

AIL %ð Þ ¼ W 2−W 3ð Þ
W 1 �mi

� 100

where mi is the initial moisture content of the manure
sample. The filtrate F1 was measured for the acid sol-
uble lignin at 208 nm using UV/Vis spectroscopy
(Agilent Cary 60) with 4% (v/v) sulfuric acid as refer-
ence blank.

Lignin monomer composition
Manure fiber lignin composition was determined by de-
rivatization followed by reductive cleavage method [67].

Colorimetric assay of uronic acid
A m-hydroxydiphenyl colorimetric assay was followed
for the determination of uronic acid content [39,68]. All
chemicals were purchased from Sigma Aldrich (St.
Louis, MO) and used as such. 200 μL of the acid hydro-
lyzate filtrate (F1) was added to 1.2 mL H2SO4-tetrabo-
rate solution (476.8 mg sodium tetraborate dissolved in
500 mL 18 M H2SO4). Followed by, heating in a boiling
water bath for 5 min and ice cooled. 20 μL of 0.15% m-
hydroxydiphenyl reagent (22.5 mg 3-phenylphenol dis-
solved in 15 mL 0.5% w/v NaOH) was added to the reac-
tion mixture and vortexed immediately until to get a
dark pink color. Finally, the reagent mixture was read
after the original color development at 520 nm using
UV/Vis spectrophotometer (Agilent Cary 60). The ur-
onic acid content was calculated from the OD value
using the glucouronic acid/galacturonic acid calibration
curve.

Scanning electron microscopy
The manure residues were collected after pretreatment at
different conditions and washed with distilled water and

vacuum dried. The dry samples both non-treated and
chemically treated were coated with gold in a SeeVac Auto
conductavac IV sputter coater and scanned by scanning
electron microscope (Hitachi S-570 LaB6, Tokyo, Japan) at
accelerating voltage of 10.0 kV (12.7 stub size).

Crystallinity index measurement
Cellulose crystallinity index (CrI) of both treated and
non-treated manure fiber was measured by powder X-
ray diffraction (PXRD) method using a Bruker D2 Phaser
instrument (Bruker AXS Inc., Madison, WI). Dried sam-
ples (~0.5 g) were ground to a powder < 100 μm size and
pressed into 40-mm diameter pellets. The pellets were
measured in Bragg-Brentano geometry using a LynxEye
detector with 4° opening. Ni-filtered copper radiation was
generated at 30 kV/10 mA, and the pellets were scanned
from 5° to 50° by 0.02° steps at 1 s each. The divergence
slit was 0.6 mm, and the primary and secondary soller slits
were 2.5° and 4°, respectively. TOPAS software version 4.2
was used to calculate the CrI of samples from the ratio of
the area of all crystalline peaks to the total area by the de-
convolution method [69].

Elemental analyses of manure fiber
Elemental analysis of the manure fiber was carried out by
using a wavelength dispersive X-ray fluorescence (WDXRF)
spectrophotometer S8 Tiger (Bruker AXS Inc., Madison,
WI). About 10 g of an air-dried, non-pretreated PBD
manure fiber sample was ground with inert binding
material (amyl acetate, 5% collodion) (Bruker AXS GmbH,
Germany) at a 5:1 ratio to assist grinding performance, in-
crease pellet stability, and reduce material rewelding in
vessel. This was followed by compression pressing of the
powder (30 KN/m2) for 15 s in a 40-cm (dia) aluminum
cup. The XRF spectrophotometer was equipped with 2
collimators (0.23° and 0.46°) and a set of 6 analyzer
crystals (XS-GE-C, XS-CEM, XS-55, PET, LiF200 and
LiF220). The measurement method used 27 kV/150 mA
excitation for light elements and 60 kV/67 mA excitation
for heavy elements using a Rhodium tube. The elemental
composition was calculated by using QUANT-EXPRESS
calibration (Bruker AXS GmbH, Germany).

Severity parameter and statistical data analysis
The severity parameter (R0), a factor intended to quan-
tify the energy intensity or severity of a pretreatment
strategy, was initially defined by Overend and Chornet
(1987) to relate temperature and time for steam explo-
sion pretreated based on the assumption that the pre-
treatment effect follows first-order kinetics and obeys
the Arrhenius equation [70]. Chum et al., (1990) later
developed a modified severity parameter to use for sul-
furic acid pretreatment that relates concentration with
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an introduced arbitrary constant, temperature and resi-
dence time as follows [71]:

M0 ¼ t � Cn � exp
Tr−Tbð Þ
14:75

� �

Where M0 is the modified severity parameter; t is the
residence time (min); C is the concentration of chemical
(wt.%); Tr is the reaction temperature; Tb is the base
temperature; n is the arbitrary constant. Silverstein et al.
(2007) used the above equation for sodium hydroxide
pretreatment by replacing the acid concentration with
the alkali concentration [41]. Similarly, modified severity
parameters of the alkaline pretreatment using NaOH
and/or NH3 were calculated from the above equation at
different n-values obtained by data training while keep-
ing positive log (M0).
The more detailed relationship between the pretreat-

ment parameters and pretreatment recovery following
enzymatic digestion (dependent variables) of the PBD
manure fiber was explored using less runs by using cen-
tral composite design experiments [64,72]. Statistical
software SAS JMP Pro version 10 was used for the de-
sign of experiments and to analyze the experimental data
obtained. 3 × 3 central composite design experiments com-
prised a total of 19 runs with different combinations of
pretreatment conditions derived by altering the three
independent variables, alkali loading both NaOH and
NH3 (2 − 10% of each loading on dry manure fiber),
treatment temperature (80, 100 and 120°C), and resi-
dence time (5, 30 and 60 min). The parameter levels
were selected based on the previous study. The experi-
mental data obtained were fitted to the following sec-
ond order polynomial regression equation to identify
the key variables:

Y ¼ β0 þ
Xn
i¼1

βixi þ
Xn
i¼1

βiix
2
i þ

Xn
i¼1

Xn
j¼1

βijxixj

Where Y is the measured response (carbohydrate recov-
ery, delignification efficiency and subsequent enzymatic
digestibility); i, j are the linear and quadratic coefficients
respectively; β0 is the regression coefficient; x is the inde-
pendent variable (alkali loading, temperature and resi-
dence time). The quality of model fit was expressed by the
coefficient of determination, R2 value. Model terms were
evaluated based on the probability, p value with 95% con-
fidence level.

Additional file

Additional file 1: Figure S1. Correlation plot of experimental and
model predicted values of percent delignification of manure fibers
pretreated at: (A) 100°C using combined NH3 and NaOH, (B) 121°C/15 psi

using combined NH3 and NaOH, (C) 121°C/15 psi using NaOH, and (D)
121°C/15 psi using NH3.
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