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Metal-free synthesis of polysubstituted oxazoles
via a decarboxylative cyclization from primary
α-amino acids
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Abstract

Background: The ubiquitous oxazoles have attracted more and more attention in both industrial and academic
fields for decades. This interest arises from the fact that a variety of natural and synthetic compounds which
contain the oxazole substructure exhibit significant biological activities and antiviral properties. Although various
synthetic methodologies for synthesis of oxazols have been reported, the development of milder and more general
procedure to access oxazoles is still desirable.

Results: In this manuscript, a novel method for synthesis of polysubstituted oxazoles was developed from metal-
free decarboxylative cyclization of easily available primary α-amino acids with 2-bromoacetophenones.

Conclusions: The method was simple, and this reaction could be carried out smoothly under mild and metal-free
conditions. By virtue of this method, various polysubstituted oxazoles were obtained from the primary α-amino
acids with moderate yields.
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Background
Oxazoles are a kind of attractive heterocycles not only be-
cause of their unique structures and varied applications
[1,2] but also they serve as structural elements for a var-
iety of natural products, pharmaceuticals and bioactive
compounds [3-5]. For example, the diazonamide and
phorboxazole families [6,7], oxazole motif-containing bio-
active natural products, exhibit anticancer properties.
Moreover, oxazole derivatives can be employed as fluores-
cent dyes [8], corrosion inhibitors [9] and also as chiral
ligands for transition-metal catalysts in asymmetric syn-
thesis [10,11]. Owing to the important applications of
oxazole derivatives, various synthetic methodologies for
these compounds have been reported. Generally, the
procedures for the synthesis of oxazoles include the
cyclodehydration of acyclic precursors [12-16], the oxi-
dation of oxazolines [17-19] and the coupling of the
prefunctionalized oxazoles with organometallic reagents
[20-22]. In light of these applications, the development
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of milder and more general procedure to access oxazoles
is still desirable. To the best of our knowledge, metal-free
synthesis of polysubstituted oxazoles is rare although sev-
eral methods for the synthesis of oxazoles have emerged
recently [23-31].
α-Amino acids are readily available, inexpensive and

stable starting materials from nature. Therefore, using α-
amino acids as the nitrogen-containing motifs to con-
struct heterocycles are very attractive synthetic method.
Many reactions about the decarboxylative of α-amino
acids have been developed in recent years [32-42]. For
example, Fu and our group have reported the synthesis
of quinazolinones via a decarboxylative coupling of α-
amino acids [43,44]. On the basis of this work, herein
we report a new decarboxylative cyclization reaction to
construct polysubstituted oxazoles containing the moiety
of primary α-amino acids under metal-free conditions.

Results and discussion
Optimization of reaction conditions
Initially, the reaction of phenylglycine (1a) with 2-
bromoacetophenone (2a) was chosen as a model reac-
tion to optimize the reaction conditions. We studied the
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reaction of 0.7 mmol of 1a and 0.5 mmol of 2a, with
1 mmol of tert-butyl hydroperoxide (TBHP, 70% aqueous
solution) as the oxidant and 20 mol% of molecular iod-
ine as the catalyst. The reaction mixture was heated in
N,N-dimethylacetamide (DMA, 2 mL) under air at 70°C
for 5 h. The decarboxylative cyclization product 2,5-
diphenyloxazole (3a) was obtained with 50% isolated
yield (Table 1, entry 1). It was found that catalyst iodine
was crucial for this reaction. Only trace amounts of the
desired product were observed in the absence of iodine
(entry 2). The replacement of catalyst iodine by copper
oxide resulted in the decrease of the reaction yield (entry
3). Also, the loading of iodine had an influence on this
reaction (entries 4 and 5). For instance, at loadings
below or above 20 mol% of iodine, reduced yields were
obtained. Besides, the base could affect this reaction.
The reaction yield slightly increased when sodium car-
bonate (0.5 mmol) was added as base. (entry 6) After
screening various bases, sodium carbonate proved to be
the best base affording 3a with 54% yield (entries 6–9).
Subsequently, different oxidants, such as DTBP, m-
CPBA, K2S2O8, were examined in this reaction. After
examination, TBHP gave the highest yield (compared en-
tries 10–12 with entry 6). In addition, we investigated in-
fluence of temperature and time on the reaction.
Lowering the reaction temperature slightly increased the
Table 1 Optimization of reaction conditions[a]

Entry Catalyst Oxidant

1 20% I2 TBHP

2 _ TBHP

3 20% CuO TBHP

4 10% I2 TBHP

5 30% I2 TBHP

6 20% I2 TBHP

7 20% I2 TBHP

8 20% I2 TBHP

9 20% I2 TBHP

10 20% I2 DTBP

11 20% I2 m-CPBA

12 20% I2 K2S2O8

13 20% I2 TBHP

14[c] 20% I2 TBHP

15 20% I2 TBHP
[a] The reaction mixture of 0.7 mmol of phenylglycine, 0.5 mmol of 2-bromoacetoph
stirred for 5 h with different catalytic loading. [b] Isolated yields based on 2-bromoa
m-CPBA = m-chloroperoxybenzoic acid.
reaction yield (entry 13). When the reaction was carried
out at 25°C for 24 h, a yield of 60% was obtained (entry
14). Finally, the highest yield of 70% was obtained when
the reaction was carried out at 25°C for 4 h and then at
60°C for another 4 h, as shown in entry 15 of Table 1.

The scope of the reaction
With the optimized reaction conditions in hand, we in-
vestigated the scope of the decarboxylative cyclization
reaction (Figure 1). A series of primary α-amino acids
were employed as the reaction substrates. Normally,
phenylglycine, glycine, alanine, norvaline, valine, isoleu-
cine, leucine and phenylalanine performed well in this
reaction to give the corresponding substituted oxazoles
with satisfactory yields (3a-3h). However, when the pri-
mary α-amino acids containing active hydrogen on the
side chains, such as lysine, arginine and serine, were
employed as the start materials, the decarboxylative cy-
clizations were blocked. Generally, electron-donating
substituent (3b-3d) and the substituent with steric effect
(3e-3g) had negative influence on this reaction. As for
2-bromoacetophenones, the substituent on the aromatic
ring had a negative influence on the reaction yield re-
gardless of the electron-donating groups or electron-
withdrawing groups on the phenyl ring of R2 (3i-3p). It
was noted that the decarboxylative cyclization also
Base Temperature (°C) Yield[b] (%)

_ 70 50

_ 70 trace

_ 70 41

_ 70 38

_ 70 49

Na2CO3 70 54

K2CO3 70 52

t-BuOK 70 12

Et3N 70 45

Na2CO3 70 49

Na2CO3 70 27

Na2CO3 70 30

Na2CO3 60 59

Na2CO3 25 60

Na2CO3 25-60 70

enone, 1 mmol of oxidant and 0.5 mmol of base in 2 mL of DMA was
cetophenone. [c] Reaction time was 24 h. DTBP = di-tert-butyl peroxide,
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Figure 1 The scope of the reaction. Standard conditions:
0.7 mmol of amino acids (1a-1h), 0.5 mmol of 2a-2j, 0.1 mmol of I2,
1 mmol of TBHP, 2 mL of DMA, were stirred at 25°C for 4 h then
slowly raised to 60°C for 4 h. Catalysts amount and isolated yields
were based on 2.
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proceeded smoothly to give the corresponding products
with moderate yields when 2-bromopropiophenone was
employed as the reaction substrate (3q-3s). When a het-
erocycle compound, 2-bromo-1-(pyridin-4-yl)ethanone,
was chosen as the reaction substrate, the reaction also
afforded the corresponding product in 52% yield (3t).
Ph

O

Br

Ph

O

Br
Ph NH2

COOH

+
radical s

standard

standard conditions

radical scavengers

TEMPO

1,4-benzoquinone

acrylonitrile

2a

2a 1a

Scheme 1 Control experiments.
Research of the reaction mechanism
To explore the reaction process, several control experi-
ments were carried out (Scheme 1, see details of control
experiments in Additional file 1). Firstly, when 2-
bromoacetophenone was employed as substrate alone
under reaction condition, no benzoylformaldehyde was
obtained (eq. 1). This implied that benzoylformaldehyde
was not the reaction intermediate. On the other hand, when
radical scavengers, such as 2,2,6,6-tetramethylpiperidine-
1-oxyl (TEMPO), 1,4-benzoquinone or acrylonitrile, were
added to the reaction system respectively, the yield
of 3a was sharply reduced from 70% to less than 15%
(eq. 2). This indicated that the reaction should undergo
a radical pathway.
Based on the results described above and previous

reports [27,28,45,46], a plausible mechanism for this
decarboxylative cyclization was proposed as follows
(Scheme 2). Initially, compound A, formed by the substi-
tution reaction of 1a with 2a, which can be transformed
following two pathways: (a) I+, generated by the oxida-
tion of iodine, could oxidize A to radical intermediate
B, which eliminates one molecular of CO2 to generate
radical C, which is further oxidized to imine D or its iso-
mer E. Subsequently, F is obtained by intramolecular
nucleophilic addition of E. Finally, the desired product
(3a) is given by deprotonation and oxidation of F; (b) G
is formed from the oxidation of A. Then 3a is obtained
through H, I, J, K following a process similar to path a.

Experimental
Instruments
Infrared samples were recorded on a Perkin-Elmer 2000
FTIR spectrometer and all IR data were given in cm-1.
NMR spectra were recorded on Brucker AVANCE 300
NMR spectrometer. The chemical shifts (δ) and coupling
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Scheme 2 Plausible mechanism.
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constants (J) were expressed in ppm and Hz respect-
ively. HRMS was recorded on a Micromass UK LTD
GCT spectrometer. Melting points were determined on
a Beijing Tech Instrument Co., LTD X-6 melting point
apparatus and are uncorrected. Unless otherwise indi-
cated, all compounds and reagents were purchased
from commercial suppliers and used without further
purification.

General procedure for the synthesis of polysubstituted
oxazoles
1a (105.8 mg, 0.7 mmol), 2a (99.5 mg, 0.5 mmol), I2
(50.8 mg, 0.2 mmol), DMA (2 mL) and TBHP (70%
aqueous solution, 1 mmol) were placed in a tube
(10 mL) and sealed with a thin film. Then the reaction
mixture was stirred at 25°C for 4 h, heated up to 60°C
and stirred at this temperature for another 4 h. After
that, the resulting mixture was cooled to the room
temperature, diluted with water, extracted with ethyl
acetate. The organic phase was washed with saturation
sodium chloride solution, dried and filtrated. The solvent
was evaporated under reduced pressure and the residue
was purified by silica gel column separation (petroleum
ether:ethyl acetate = 10:1) to give 3a (154.7 mg, 70%) as
light yellow solid, mp = 70–72°C.
Other oxazoles were prepared via similar procedures,

for details of their characterization data and NMR spec-
tra, see Additional file 1.

Conclusions
In summary, a new metal-free decarboxylative cyclization of
available primary α-amino acids with 2-bromoacetophenones
was developed for the synthesis of polysubstituted
oxazoles. A series of oxazoles can be obtained with mod-
erate yields under mild conditions. It is attractive for
chemists and chemical industries because oxazoles are
useful synthetic intermediates for bioactive compounds.

Additional file

Additional file 1: Control experiments, characterization data and
NMR spectra for the products.

http://www.biomedcentral.com/content/supplementary/2043-7129-1-8-S1.pdf
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